循环:利用出处和可视化支持笔记本中的探索性数据分析。

Klaus Eckelt, Kiran Gadhave, Alexander Lex, Marc Streit
{"title":"循环:利用出处和可视化支持笔记本中的探索性数据分析。","authors":"Klaus Eckelt, Kiran Gadhave, Alexander Lex, Marc Streit","doi":"10.1109/TVCG.2024.3456186","DOIUrl":null,"url":null,"abstract":"<p><p>Exploratory data science is an iterative process of obtaining, cleaning, profiling, analyzing, and interpreting data. This cyclical way of working creates challenges within the linear structure of computational notebooks, leading to issues with code quality, recall, and reproducibility. To remedy this, we present Loops, a set of visual support techniques for iterative and exploratory data analysis in computational notebooks. Loops leverages provenance information to visualize the impact of changes made within a notebook. In visualizations of the notebook provenance, we trace the evolution of the notebook over time and highlight differences between versions. Loops visualizes the provenance of code, markdown, tables, visualizations, and images and their respective differences. Analysts can explore these differences in detail in a separate view. Loops not only makes the analysis process transparent but also supports analysts in their data science work by showing the effects of changes and facilitating comparison of multiple versions. We demonstrate our approach's utility and potential impact in two use cases and feedback from notebook users from various backgrounds. This paper and all supplemental materials are available at https://osf.io/79eyn.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loops: Leveraging Provenance and Visualization to Support Exploratory Data Analysis in Notebooks.\",\"authors\":\"Klaus Eckelt, Kiran Gadhave, Alexander Lex, Marc Streit\",\"doi\":\"10.1109/TVCG.2024.3456186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exploratory data science is an iterative process of obtaining, cleaning, profiling, analyzing, and interpreting data. This cyclical way of working creates challenges within the linear structure of computational notebooks, leading to issues with code quality, recall, and reproducibility. To remedy this, we present Loops, a set of visual support techniques for iterative and exploratory data analysis in computational notebooks. Loops leverages provenance information to visualize the impact of changes made within a notebook. In visualizations of the notebook provenance, we trace the evolution of the notebook over time and highlight differences between versions. Loops visualizes the provenance of code, markdown, tables, visualizations, and images and their respective differences. Analysts can explore these differences in detail in a separate view. Loops not only makes the analysis process transparent but also supports analysts in their data science work by showing the effects of changes and facilitating comparison of multiple versions. We demonstrate our approach's utility and potential impact in two use cases and feedback from notebook users from various backgrounds. This paper and all supplemental materials are available at https://osf.io/79eyn.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2024.3456186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3456186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

探索性数据科学是一个获取、清理、剖析、分析和解释数据的迭代过程。这种循环往复的工作方式给计算笔记本的线性结构带来了挑战,导致代码质量、召回率和可重复性方面的问题。为了解决这个问题,我们提出了循环(Loops)技术,这是一套用于计算笔记本中迭代和探索性数据分析的可视化支持技术。Loops 利用来源信息来可视化笔记本中的变更所产生的影响。在可视化笔记本来源的过程中,我们可以追踪笔记本随时间的演变,并突出不同版本之间的差异。Loops 可视化代码、markdown、表格、可视化和图像的出处及其各自的差异。分析师可以在单独的视图中详细探索这些差异。Loops 不仅使分析过程透明化,还通过显示更改的影响和方便比较多个版本,为分析师的数据科学工作提供支持。我们通过两个使用案例和来自不同背景的笔记本用户的反馈,展示了我们的方法的实用性和潜在影响。本文及所有补充材料可在 https://osf.io/79eyn 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loops: Leveraging Provenance and Visualization to Support Exploratory Data Analysis in Notebooks.

Exploratory data science is an iterative process of obtaining, cleaning, profiling, analyzing, and interpreting data. This cyclical way of working creates challenges within the linear structure of computational notebooks, leading to issues with code quality, recall, and reproducibility. To remedy this, we present Loops, a set of visual support techniques for iterative and exploratory data analysis in computational notebooks. Loops leverages provenance information to visualize the impact of changes made within a notebook. In visualizations of the notebook provenance, we trace the evolution of the notebook over time and highlight differences between versions. Loops visualizes the provenance of code, markdown, tables, visualizations, and images and their respective differences. Analysts can explore these differences in detail in a separate view. Loops not only makes the analysis process transparent but also supports analysts in their data science work by showing the effects of changes and facilitating comparison of multiple versions. We demonstrate our approach's utility and potential impact in two use cases and feedback from notebook users from various backgrounds. This paper and all supplemental materials are available at https://osf.io/79eyn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信