利用机器人运动平台为质子 FLASH 临床前研究模拟大光斑扫描辐射场。

ArXiv Pub Date : 2024-09-14
Fada Guan, Dadi Jiang, Xiaochun Wang, Ming Yang, Kiminori Iga, Yuting Li, Lawrence Bronk, Julianna Bronk, Liang Wang, Youming Guo, Narayan Sahoo, David R Grosshans, Albert C Koong, Xiaorong R Zhu, Radhe Mohan
{"title":"利用机器人运动平台为质子 FLASH 临床前研究模拟大光斑扫描辐射场。","authors":"Fada Guan, Dadi Jiang, Xiaochun Wang, Ming Yang, Kiminori Iga, Yuting Li, Lawrence Bronk, Julianna Bronk, Liang Wang, Youming Guo, Narayan Sahoo, David R Grosshans, Albert C Koong, Xiaorong R Zhu, Radhe Mohan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiating mice (1-cm<sup>2</sup> square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95%). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419177/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mimicking large spot-scanning radiation fields for proton FLASH preclinical studies with a robotic motion platform.\",\"authors\":\"Fada Guan, Dadi Jiang, Xiaochun Wang, Ming Yang, Kiminori Iga, Yuting Li, Lawrence Bronk, Julianna Bronk, Liang Wang, Youming Guo, Narayan Sahoo, David R Grosshans, Albert C Koong, Xiaorong R Zhu, Radhe Mohan\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiating mice (1-cm<sup>2</sup> square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95%). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419177/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此之前,同步加速器水平质子束线(87.2 MeV)已成功投入使用,以 FLASH 和传统剂量率模式向小场和小体积提供辐射剂量。在这项研究中,我们开发了一种策略,利用定制的机器人运动平台自动移动生物样本的位置,以增加有效辐射场的大小。首先用一个薄钨散射器拓宽光束,然后用定制的黄铜准直器对光束进行塑形,以便照射 96 孔板中的细胞/类器官培养物(直径为 7 毫米的圆形)或照射小鼠(1 平方厘米的正方形)。机器人平台的运动模式是用 G 代码编写的,96 孔板的光斑间距为 9 毫米,小鼠的光斑间距为 10.6 毫米。目标定位的准确性由自动调平激光系统验证。通过在 96 孔板或小鼠背部粘贴 EBT-XD 薄膜,对实验条件下的剂量进行了验证。薄膜测量的剂量曲线与蒙特卡洛计算结果非常吻合(一维伽马通过率大于 95%)。细胞/类器官辐照的 FLASH 剂量率为 113.7 Gy/s,小鼠辐照的 FLASH 剂量率为 191.3 Gy/s。这些令人鼓舞的结果表明,这种机器人平台可用于有效增加质子FLASH临床前实验的磁场尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mimicking large spot-scanning radiation fields for proton FLASH preclinical studies with a robotic motion platform.

Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiating mice (1-cm2 square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95%). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信