磁化传递可以解释磁共振成像文献中大部分的 $T_1$ 变异。

ArXiv Pub Date : 2024-09-09
Jakob Assländer
{"title":"磁化传递可以解释磁共振成像文献中大部分的 $T_1$ 变异。","authors":"Jakob Assländer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To identify the predominant source of the <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> variability described in the literature, which ranges from 0.6-1.1s for brain white matter at 3T.</p><p><strong>Methods: </strong>25 <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> -mapping methods from the literature were simulated with a mono-exponential and magnetization-transfer (MT) models, each followed by mono-exponential fitting. A single set of model parameters was assumed for the simulation of all methods, and these parameters were estimated by fitting the simulation-based to the corresponding literature <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> values of white matter at 3T.</p><p><strong>Results: </strong>Mono-exponential simulations suggest good inter-method reproducibility and fail to explain the highly variable <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> estimates in the literature. In contrast, MT simulations suggest that a mono-exponential fit results in a variable <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> and explain up to 62% of the literature's variability.</p><p><strong>Conclusion: </strong>The results suggest that a mono-exponential model does not adequately describe longitudinal relaxation in biological tissue. Therefore, <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> in biological tissue should be considered only a <i>semi-quantitative</i> metric that is inherently contingent upon the imaging methodology; and comparisons between different <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> -mapping methods and the use of simplistic spin systems-such as doped-water phantoms-for validation should be viewed with caution.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419191/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Magnetization transfer explains most of the <ns0:math> <ns0:mrow><ns0:msub><ns0:mi>T</ns0:mi> <ns0:mn>1</ns0:mn></ns0:msub> </ns0:mrow> </ns0:math> variability in the MRI literature.\",\"authors\":\"Jakob Assländer\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To identify the predominant source of the <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> variability described in the literature, which ranges from 0.6-1.1s for brain white matter at 3T.</p><p><strong>Methods: </strong>25 <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> -mapping methods from the literature were simulated with a mono-exponential and magnetization-transfer (MT) models, each followed by mono-exponential fitting. A single set of model parameters was assumed for the simulation of all methods, and these parameters were estimated by fitting the simulation-based to the corresponding literature <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> values of white matter at 3T.</p><p><strong>Results: </strong>Mono-exponential simulations suggest good inter-method reproducibility and fail to explain the highly variable <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> estimates in the literature. In contrast, MT simulations suggest that a mono-exponential fit results in a variable <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> and explain up to 62% of the literature's variability.</p><p><strong>Conclusion: </strong>The results suggest that a mono-exponential model does not adequately describe longitudinal relaxation in biological tissue. Therefore, <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> in biological tissue should be considered only a <i>semi-quantitative</i> metric that is inherently contingent upon the imaging methodology; and comparisons between different <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> </math> -mapping methods and the use of simplistic spin systems-such as doped-water phantoms-for validation should be viewed with caution.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419191/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:确定文献中描述的$T_1$变异性的主要来源,文献中描述的脑白质在 3 T 下的$T_1$变异性范围为 0.6 - 1.1 秒。方法:用单指数模型和磁化转移(MT)模型模拟文献中的 25 种$T_1$绘图方法,每种方法都进行了单指数拟合。所有方法的模拟都假定有一组模型参数,这些参数是通过将模拟结果与相应文献中 3 T 白质的 $T_1$ 值进行拟合而估算出来的:单指数模拟表明方法间具有良好的可重复性,但无法解释文献中高度多变的 T_1$ 估计值。与此相反,MT 模拟表明单指数拟合会产生可变的 $T_1$,并能解释文献中高达 62% 的可变性:结果表明,单指数模型不能充分描述生物组织的纵向弛豫。因此,生物组织中的 $T_1$ 只应被视为一种半定量指标,其本身取决于成像方法;应谨慎看待不同 $T_1$ 绘图方法之间的比较以及使用简单自旋系统(如掺水模型)进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetization transfer explains most of the T 1 variability in the MRI literature.

Purpose: To identify the predominant source of the T 1 variability described in the literature, which ranges from 0.6-1.1s for brain white matter at 3T.

Methods: 25 T 1 -mapping methods from the literature were simulated with a mono-exponential and magnetization-transfer (MT) models, each followed by mono-exponential fitting. A single set of model parameters was assumed for the simulation of all methods, and these parameters were estimated by fitting the simulation-based to the corresponding literature T 1 values of white matter at 3T.

Results: Mono-exponential simulations suggest good inter-method reproducibility and fail to explain the highly variable T 1 estimates in the literature. In contrast, MT simulations suggest that a mono-exponential fit results in a variable T 1 and explain up to 62% of the literature's variability.

Conclusion: The results suggest that a mono-exponential model does not adequately describe longitudinal relaxation in biological tissue. Therefore, T 1 in biological tissue should be considered only a semi-quantitative metric that is inherently contingent upon the imaging methodology; and comparisons between different T 1 -mapping methods and the use of simplistic spin systems-such as doped-water phantoms-for validation should be viewed with caution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信