{"title":"ℓ 1 -Regularized ICA:分析任务相关 fMRI 数据的新方法。","authors":"Yusuke Endo;Koujin Takeda","doi":"10.1162/neco_a_01709","DOIUrl":null,"url":null,"abstract":"We propose a new method of independent component analysis (ICA) in order to extract appropriate features from high-dimensional data. In general, matrix factorization methods including ICA have a problem regarding the interpretability of extracted features. For the improvement of interpretability, sparse constraint on a factorized matrix is helpful. With this background, we construct a new ICA method with sparsity. In our method, the ℓ1-regularization term is added to the cost function of ICA, and minimization of the cost function is performed by a difference of convex functions algorithm. For the validity of our proposed method, we apply it to synthetic data and real functional magnetic resonance imaging data.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 11","pages":"2540-2570"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ℓ1-Regularized ICA: A Novel Method for Analysis of Task-Related fMRI Data\",\"authors\":\"Yusuke Endo;Koujin Takeda\",\"doi\":\"10.1162/neco_a_01709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method of independent component analysis (ICA) in order to extract appropriate features from high-dimensional data. In general, matrix factorization methods including ICA have a problem regarding the interpretability of extracted features. For the improvement of interpretability, sparse constraint on a factorized matrix is helpful. With this background, we construct a new ICA method with sparsity. In our method, the ℓ1-regularization term is added to the cost function of ICA, and minimization of the cost function is performed by a difference of convex functions algorithm. For the validity of our proposed method, we apply it to synthetic data and real functional magnetic resonance imaging data.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"36 11\",\"pages\":\"2540-2570\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10810336/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810336/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种新的独立分量分析(ICA)方法,以便从高维数据中提取适当的特征。一般来说,包括 ICA 在内的矩阵因式分解方法在提取特征的可解释性方面存在问题。为了提高可解释性,对因式分解矩阵进行稀疏约束很有帮助。在此背景下,我们构建了一种具有稀疏性的新 ICA 方法。在我们的方法中,ICA 的代价函数中加入了 ℓ1-regularized IC 项,代价函数的最小化是通过凸函数差分算法来实现的。为了证明我们提出的方法的有效性,我们将其应用于合成数据和真实的功能磁共振成像数据。
ℓ1-Regularized ICA: A Novel Method for Analysis of Task-Related fMRI Data
We propose a new method of independent component analysis (ICA) in order to extract appropriate features from high-dimensional data. In general, matrix factorization methods including ICA have a problem regarding the interpretability of extracted features. For the improvement of interpretability, sparse constraint on a factorized matrix is helpful. With this background, we construct a new ICA method with sparsity. In our method, the ℓ1-regularization term is added to the cost function of ICA, and minimization of the cost function is performed by a difference of convex functions algorithm. For the validity of our proposed method, we apply it to synthetic data and real functional magnetic resonance imaging data.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.