Valentin Leplat;Le T. K. Hien;Akwum Onwunta;Nicolas Gillis
{"title":"利用贝塔差分进行深度非负矩阵因式分解","authors":"Valentin Leplat;Le T. K. Hien;Akwum Onwunta;Nicolas Gillis","doi":"10.1162/neco_a_01679","DOIUrl":null,"url":null,"abstract":"Deep nonnegative matrix factorization (deep NMF) has recently emerged as a valuable technique for extracting multiple layers of features across different scales. However, all existing deep NMF models and algorithms have primarily centered their evaluation on the least squares error, which may not be the most appropriate metric for assessing the quality of approximations on diverse data sets. For instance, when dealing with data types such as audio signals and documents, it is widely acknowledged that ß-divergences offer a more suitable alternative. In this article, we develop new models and algorithms for deep NMF using some ß-divergences, with a focus on the Kullback-Leibler divergence. Subsequently, we apply these techniques to the extraction of facial features, the identification of topics within document collections, and the identification of materials within hyperspectral images.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 11","pages":"2365-2402"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Nonnegative Matrix Factorization With Beta Divergences\",\"authors\":\"Valentin Leplat;Le T. K. Hien;Akwum Onwunta;Nicolas Gillis\",\"doi\":\"10.1162/neco_a_01679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep nonnegative matrix factorization (deep NMF) has recently emerged as a valuable technique for extracting multiple layers of features across different scales. However, all existing deep NMF models and algorithms have primarily centered their evaluation on the least squares error, which may not be the most appropriate metric for assessing the quality of approximations on diverse data sets. For instance, when dealing with data types such as audio signals and documents, it is widely acknowledged that ß-divergences offer a more suitable alternative. In this article, we develop new models and algorithms for deep NMF using some ß-divergences, with a focus on the Kullback-Leibler divergence. Subsequently, we apply these techniques to the extraction of facial features, the identification of topics within document collections, and the identification of materials within hyperspectral images.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"36 11\",\"pages\":\"2365-2402\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10810333/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810333/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep Nonnegative Matrix Factorization With Beta Divergences
Deep nonnegative matrix factorization (deep NMF) has recently emerged as a valuable technique for extracting multiple layers of features across different scales. However, all existing deep NMF models and algorithms have primarily centered their evaluation on the least squares error, which may not be the most appropriate metric for assessing the quality of approximations on diverse data sets. For instance, when dealing with data types such as audio signals and documents, it is widely acknowledged that ß-divergences offer a more suitable alternative. In this article, we develop new models and algorithms for deep NMF using some ß-divergences, with a focus on the Kullback-Leibler divergence. Subsequently, we apply these techniques to the extraction of facial features, the identification of topics within document collections, and the identification of materials within hyperspectral images.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.