Kholoud A. Elmihi, Kelly-Ann Leonard, Randy Nelson, Aducio Thiesen, Robin D. Clugston, René L. Jacobs
{"title":"乙醇胺磷酸酯磷酸化酶在调节小鼠肝磷脂酰乙醇胺和血浆脂蛋白代谢中的新作用","authors":"Kholoud A. Elmihi, Kelly-Ann Leonard, Randy Nelson, Aducio Thiesen, Robin D. Clugston, René L. Jacobs","doi":"10.1096/fj.202401321R","DOIUrl":null,"url":null,"abstract":"<p>Ethanolamine phosphate phospholyase (ETNPPL) is an enzyme that irreversibly degrades phospho-ethanolamine (p-ETN), an intermediate in the Kennedy pathway of phosphatidylethanolamine (PE) biosynthesis. PE is the second most abundant phospholipid in mammalian membranes. Disturbance of hepatic phospholipid homeostasis has been linked to the development of metabolic dysfunction-associated steatotic liver disease (MASLD). We generated whole-body <i>Etnppl</i> knockout mice to investigate the impact of genetic deletion of <i>Etnppl</i> on hepatic lipid metabolism. Primary hepatocytes isolated from <i>Etnppl</i><sup><i>−/−</i></sup> mice showed increased conversion of [3H]ethanolamine to [<sup>3</sup>H]p-ETN and [<sup>3</sup>H]PE compared to <i>Etnppl</i><sup><i>+/+</i></sup> mice. Male and female <i>Etnppl</i><sup><i>+/+</i></sup> and <i>Etnppl</i><sup><i>−/−</i></sup> mice were fed either a chow or a western-type diet (WTD). Irrespective of diet, <i>Etnppl</i><sup><i>−/−</i></sup> mice had elevated fasting levels of total plasma cholesterol, triglyceride (TG) and apolipoprotein B100 (VLDL particles). Interestingly, hepatic TG secretion was unchanged between groups. Although hepatic lipids (phosphatidylcholine (PC), PE, TG, and cholesterol) were not different between mice, RNA sequencing analysis showed downregulation in genes related to cholesterol biosynthesis in <i>Etnppl</i><sup><i>−/−</i></sup> mice. Furthermore, hepatic low-density lipoprotein receptor-related protein1 (LRP1) protein level was lower in female <i>Etnppl</i><sup><i>−/−</i></sup> mice, which may indicate reduced uptake of remnant VLDL particles from circulation. Hepatic PE levels were only increased in WTD-fed female <i>Etnppl</i><sup><i>−/−</i></sup> mice, not chow diet-fed mice. However, hepatic lipid accumulation and metabolic dysfunction-associated steatohepatitis (MASH) development were unchanged between <i>Etnppl</i><sup><i>+/+</i></sup> and <i>Etnppl</i><sup><i>−/−</i></sup> mice. To conclude, ETNPPL has a role in regulating plasma lipoprotein metabolism independent of hepatic TG levels.</p>","PeriodicalId":50455,"journal":{"name":"FASEB Journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202401321R","citationCount":"0","resultStr":"{\"title\":\"The emerging role of ethanolamine phosphate phospholyase in regulating hepatic phosphatidylethanolamine and plasma lipoprotein metabolism in mice\",\"authors\":\"Kholoud A. Elmihi, Kelly-Ann Leonard, Randy Nelson, Aducio Thiesen, Robin D. Clugston, René L. Jacobs\",\"doi\":\"10.1096/fj.202401321R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ethanolamine phosphate phospholyase (ETNPPL) is an enzyme that irreversibly degrades phospho-ethanolamine (p-ETN), an intermediate in the Kennedy pathway of phosphatidylethanolamine (PE) biosynthesis. PE is the second most abundant phospholipid in mammalian membranes. Disturbance of hepatic phospholipid homeostasis has been linked to the development of metabolic dysfunction-associated steatotic liver disease (MASLD). We generated whole-body <i>Etnppl</i> knockout mice to investigate the impact of genetic deletion of <i>Etnppl</i> on hepatic lipid metabolism. Primary hepatocytes isolated from <i>Etnppl</i><sup><i>−/−</i></sup> mice showed increased conversion of [3H]ethanolamine to [<sup>3</sup>H]p-ETN and [<sup>3</sup>H]PE compared to <i>Etnppl</i><sup><i>+/+</i></sup> mice. Male and female <i>Etnppl</i><sup><i>+/+</i></sup> and <i>Etnppl</i><sup><i>−/−</i></sup> mice were fed either a chow or a western-type diet (WTD). Irrespective of diet, <i>Etnppl</i><sup><i>−/−</i></sup> mice had elevated fasting levels of total plasma cholesterol, triglyceride (TG) and apolipoprotein B100 (VLDL particles). Interestingly, hepatic TG secretion was unchanged between groups. Although hepatic lipids (phosphatidylcholine (PC), PE, TG, and cholesterol) were not different between mice, RNA sequencing analysis showed downregulation in genes related to cholesterol biosynthesis in <i>Etnppl</i><sup><i>−/−</i></sup> mice. Furthermore, hepatic low-density lipoprotein receptor-related protein1 (LRP1) protein level was lower in female <i>Etnppl</i><sup><i>−/−</i></sup> mice, which may indicate reduced uptake of remnant VLDL particles from circulation. Hepatic PE levels were only increased in WTD-fed female <i>Etnppl</i><sup><i>−/−</i></sup> mice, not chow diet-fed mice. However, hepatic lipid accumulation and metabolic dysfunction-associated steatohepatitis (MASH) development were unchanged between <i>Etnppl</i><sup><i>+/+</i></sup> and <i>Etnppl</i><sup><i>−/−</i></sup> mice. To conclude, ETNPPL has a role in regulating plasma lipoprotein metabolism independent of hepatic TG levels.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"FASEB Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202401321R\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401321R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401321R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The emerging role of ethanolamine phosphate phospholyase in regulating hepatic phosphatidylethanolamine and plasma lipoprotein metabolism in mice
Ethanolamine phosphate phospholyase (ETNPPL) is an enzyme that irreversibly degrades phospho-ethanolamine (p-ETN), an intermediate in the Kennedy pathway of phosphatidylethanolamine (PE) biosynthesis. PE is the second most abundant phospholipid in mammalian membranes. Disturbance of hepatic phospholipid homeostasis has been linked to the development of metabolic dysfunction-associated steatotic liver disease (MASLD). We generated whole-body Etnppl knockout mice to investigate the impact of genetic deletion of Etnppl on hepatic lipid metabolism. Primary hepatocytes isolated from Etnppl−/− mice showed increased conversion of [3H]ethanolamine to [3H]p-ETN and [3H]PE compared to Etnppl+/+ mice. Male and female Etnppl+/+ and Etnppl−/− mice were fed either a chow or a western-type diet (WTD). Irrespective of diet, Etnppl−/− mice had elevated fasting levels of total plasma cholesterol, triglyceride (TG) and apolipoprotein B100 (VLDL particles). Interestingly, hepatic TG secretion was unchanged between groups. Although hepatic lipids (phosphatidylcholine (PC), PE, TG, and cholesterol) were not different between mice, RNA sequencing analysis showed downregulation in genes related to cholesterol biosynthesis in Etnppl−/− mice. Furthermore, hepatic low-density lipoprotein receptor-related protein1 (LRP1) protein level was lower in female Etnppl−/− mice, which may indicate reduced uptake of remnant VLDL particles from circulation. Hepatic PE levels were only increased in WTD-fed female Etnppl−/− mice, not chow diet-fed mice. However, hepatic lipid accumulation and metabolic dysfunction-associated steatohepatitis (MASH) development were unchanged between Etnppl+/+ and Etnppl−/− mice. To conclude, ETNPPL has a role in regulating plasma lipoprotein metabolism independent of hepatic TG levels.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.