Chae Young Lim, Beomseok Sohn, Minjung Seong, Eung Yeop Kim, Sung Tae Kim, So Yeon Won
{"title":"出血性脑卒中人工智能研究需要透明度和临床可解释性:促进有效的临床应用。","authors":"Chae Young Lim, Beomseok Sohn, Minjung Seong, Eung Yeop Kim, Sung Tae Kim, So Yeon Won","doi":"10.3349/ymj.2024.0007","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to evaluate the quality of artificial intelligence (AI)/machine learning (ML) studies on hemorrhagic stroke using the Minimum Information for Medical AI Reporting (MINIMAR) and Minimum Information About Clinical Artificial Intelligence Modeling (MI-CLAIM) frameworks to promote clinical application.</p><p><strong>Materials and methods: </strong>PubMed, MEDLINE, and Embase were searched for AI/ML studies on hemorrhagic stroke. Out of the 531 articles found, 29 relevant original research articles were included. MINIMAR and MI-CLAIM scores were assigned by two experienced radiologists to assess the quality of the studies.</p><p><strong>Results: </strong>We analyzed 29 investigations that utilized AI/ML in the field of hemorrhagic stroke, involving a median of 224.5 patients. The majority of studies focused on diagnostic outcomes using computed tomography scans (89.7%) and were published in computer science journals (48.3%). The overall adherence rates to reporting guidelines, as assessed through the MINIMAR and MI-CLAIM frameworks, were 47.6% and 46.0%, respectively. In MINIMAR, none of the studies reported the socioeconomic status of the patients or how missing values had been addressed. In MI-CLAIM, only two studies applied model-examination techniques to improve model interpretability. Transparency and reproducibility were limited, as only 10.3% of the studies had publicly shared their code. Cohen's kappa between the two radiologists was 0.811 and 0.779 for MINIMAR and MI-CLAIM, respectively.</p><p><strong>Conclusion: </strong>The overall reporting quality of published AI/ML studies on hemorrhagic stroke is suboptimal. It is necessary to incorporate model examination techniques for interpretability and promote code openness to enhance transparency and increase the clinical applicability of AI/ML studies.</p>","PeriodicalId":23765,"journal":{"name":"Yonsei Medical Journal","volume":"65 10","pages":"611-618"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Need for Transparency and Clinical Interpretability in Hemorrhagic Stroke Artificial Intelligence Research: Promoting Effective Clinical Application.\",\"authors\":\"Chae Young Lim, Beomseok Sohn, Minjung Seong, Eung Yeop Kim, Sung Tae Kim, So Yeon Won\",\"doi\":\"10.3349/ymj.2024.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to evaluate the quality of artificial intelligence (AI)/machine learning (ML) studies on hemorrhagic stroke using the Minimum Information for Medical AI Reporting (MINIMAR) and Minimum Information About Clinical Artificial Intelligence Modeling (MI-CLAIM) frameworks to promote clinical application.</p><p><strong>Materials and methods: </strong>PubMed, MEDLINE, and Embase were searched for AI/ML studies on hemorrhagic stroke. Out of the 531 articles found, 29 relevant original research articles were included. MINIMAR and MI-CLAIM scores were assigned by two experienced radiologists to assess the quality of the studies.</p><p><strong>Results: </strong>We analyzed 29 investigations that utilized AI/ML in the field of hemorrhagic stroke, involving a median of 224.5 patients. The majority of studies focused on diagnostic outcomes using computed tomography scans (89.7%) and were published in computer science journals (48.3%). The overall adherence rates to reporting guidelines, as assessed through the MINIMAR and MI-CLAIM frameworks, were 47.6% and 46.0%, respectively. In MINIMAR, none of the studies reported the socioeconomic status of the patients or how missing values had been addressed. In MI-CLAIM, only two studies applied model-examination techniques to improve model interpretability. Transparency and reproducibility were limited, as only 10.3% of the studies had publicly shared their code. Cohen's kappa between the two radiologists was 0.811 and 0.779 for MINIMAR and MI-CLAIM, respectively.</p><p><strong>Conclusion: </strong>The overall reporting quality of published AI/ML studies on hemorrhagic stroke is suboptimal. It is necessary to incorporate model examination techniques for interpretability and promote code openness to enhance transparency and increase the clinical applicability of AI/ML studies.</p>\",\"PeriodicalId\":23765,\"journal\":{\"name\":\"Yonsei Medical Journal\",\"volume\":\"65 10\",\"pages\":\"611-618\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yonsei Medical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3349/ymj.2024.0007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yonsei Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3349/ymj.2024.0007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Need for Transparency and Clinical Interpretability in Hemorrhagic Stroke Artificial Intelligence Research: Promoting Effective Clinical Application.
Purpose: This study aimed to evaluate the quality of artificial intelligence (AI)/machine learning (ML) studies on hemorrhagic stroke using the Minimum Information for Medical AI Reporting (MINIMAR) and Minimum Information About Clinical Artificial Intelligence Modeling (MI-CLAIM) frameworks to promote clinical application.
Materials and methods: PubMed, MEDLINE, and Embase were searched for AI/ML studies on hemorrhagic stroke. Out of the 531 articles found, 29 relevant original research articles were included. MINIMAR and MI-CLAIM scores were assigned by two experienced radiologists to assess the quality of the studies.
Results: We analyzed 29 investigations that utilized AI/ML in the field of hemorrhagic stroke, involving a median of 224.5 patients. The majority of studies focused on diagnostic outcomes using computed tomography scans (89.7%) and were published in computer science journals (48.3%). The overall adherence rates to reporting guidelines, as assessed through the MINIMAR and MI-CLAIM frameworks, were 47.6% and 46.0%, respectively. In MINIMAR, none of the studies reported the socioeconomic status of the patients or how missing values had been addressed. In MI-CLAIM, only two studies applied model-examination techniques to improve model interpretability. Transparency and reproducibility were limited, as only 10.3% of the studies had publicly shared their code. Cohen's kappa between the two radiologists was 0.811 and 0.779 for MINIMAR and MI-CLAIM, respectively.
Conclusion: The overall reporting quality of published AI/ML studies on hemorrhagic stroke is suboptimal. It is necessary to incorporate model examination techniques for interpretability and promote code openness to enhance transparency and increase the clinical applicability of AI/ML studies.
期刊介绍:
The goal of the Yonsei Medical Journal (YMJ) is to publish high quality manuscripts dedicated to clinical or basic research. Any authors affiliated with an accredited biomedical institution may submit manuscripts of original articles, review articles, case reports, brief communications, and letters to the Editor.