{"title":"罗非鱼作为采矿流域大坝金属污染生物监测的模式鱼:不同组织的诊断对比和健康风险评估。","authors":"Federico Páez-Osuna, Aldivar Castro Espinoza, Eduardo Tirado Figueroa, César J Saucedo Barrón, Magdalena E Bergés-Tiznado","doi":"10.1007/s10653-024-02232-8","DOIUrl":null,"url":null,"abstract":"<p><p>Tilapia is a model fish species used as a pollution biomonitor due to its tolerance and availability in many contaminated sites. Blue tilapia Oreochromis aureus specimens (n = 320) were collected in eleven dams influenced by mining in the SE Gulf of California region (dams 1, 2 and, 3 comprise 55 mining sites; dam 4 comprises 8; dams 6, 8, 10, and 11, ≤ 6; and dams 5, 7, and 9 include 19, 20, and 16 mining sites, respectively). Cadmium, Cu, Pb, and Zn concentrations were analyzed in the muscle, liver, gills, and guts to identify metal pollution and evaluate risks and seasonal changes. The distinct tissues exhibited different metal accumulation capacities, therefore allowed develop a diagnosis comparative between the eleven dams. In general, metal concentrations were higher in dams 1, 2, 5, and 9, which are associated with more mining sites in their sub-basins. The four metals exhibited the highest levels in the tilapia liver in dams 1 and 2, which can be related to the present and past mining activity in the lower watershed (55 sites) and the geothermal activity in these dams. In general, Zn exhibited the highest level in the tilapia livers from dams 1, 2, 3, 4, 5, and 10 compared to the maximum mean (220 µg/g) concentrations previously recorded. The non-carcinogenic risks indicated that the Pb risk was enhanced when the intake was ≥ 231.5 g week<sup>-1</sup> of tilapia muscle, indicating a potential risk of adverse health effects for the entire population.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"447"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422272/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tilapia as a model fish for biomonitoring of metal pollution in dams associated with mining watersheds: contrasting diagnosis from different tissues and health risk assessment.\",\"authors\":\"Federico Páez-Osuna, Aldivar Castro Espinoza, Eduardo Tirado Figueroa, César J Saucedo Barrón, Magdalena E Bergés-Tiznado\",\"doi\":\"10.1007/s10653-024-02232-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tilapia is a model fish species used as a pollution biomonitor due to its tolerance and availability in many contaminated sites. Blue tilapia Oreochromis aureus specimens (n = 320) were collected in eleven dams influenced by mining in the SE Gulf of California region (dams 1, 2 and, 3 comprise 55 mining sites; dam 4 comprises 8; dams 6, 8, 10, and 11, ≤ 6; and dams 5, 7, and 9 include 19, 20, and 16 mining sites, respectively). Cadmium, Cu, Pb, and Zn concentrations were analyzed in the muscle, liver, gills, and guts to identify metal pollution and evaluate risks and seasonal changes. The distinct tissues exhibited different metal accumulation capacities, therefore allowed develop a diagnosis comparative between the eleven dams. In general, metal concentrations were higher in dams 1, 2, 5, and 9, which are associated with more mining sites in their sub-basins. The four metals exhibited the highest levels in the tilapia liver in dams 1 and 2, which can be related to the present and past mining activity in the lower watershed (55 sites) and the geothermal activity in these dams. In general, Zn exhibited the highest level in the tilapia livers from dams 1, 2, 3, 4, 5, and 10 compared to the maximum mean (220 µg/g) concentrations previously recorded. The non-carcinogenic risks indicated that the Pb risk was enhanced when the intake was ≥ 231.5 g week<sup>-1</sup> of tilapia muscle, indicating a potential risk of adverse health effects for the entire population.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 11\",\"pages\":\"447\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422272/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02232-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02232-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Tilapia as a model fish for biomonitoring of metal pollution in dams associated with mining watersheds: contrasting diagnosis from different tissues and health risk assessment.
Tilapia is a model fish species used as a pollution biomonitor due to its tolerance and availability in many contaminated sites. Blue tilapia Oreochromis aureus specimens (n = 320) were collected in eleven dams influenced by mining in the SE Gulf of California region (dams 1, 2 and, 3 comprise 55 mining sites; dam 4 comprises 8; dams 6, 8, 10, and 11, ≤ 6; and dams 5, 7, and 9 include 19, 20, and 16 mining sites, respectively). Cadmium, Cu, Pb, and Zn concentrations were analyzed in the muscle, liver, gills, and guts to identify metal pollution and evaluate risks and seasonal changes. The distinct tissues exhibited different metal accumulation capacities, therefore allowed develop a diagnosis comparative between the eleven dams. In general, metal concentrations were higher in dams 1, 2, 5, and 9, which are associated with more mining sites in their sub-basins. The four metals exhibited the highest levels in the tilapia liver in dams 1 and 2, which can be related to the present and past mining activity in the lower watershed (55 sites) and the geothermal activity in these dams. In general, Zn exhibited the highest level in the tilapia livers from dams 1, 2, 3, 4, 5, and 10 compared to the maximum mean (220 µg/g) concentrations previously recorded. The non-carcinogenic risks indicated that the Pb risk was enhanced when the intake was ≥ 231.5 g week-1 of tilapia muscle, indicating a potential risk of adverse health effects for the entire population.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.