{"title":"骨髓移植后他克莫司与 CYP3A4 抑制剂伏立康唑和克拉霉素联合用药的药物相互作用药代动力学模型","authors":"Toshinori Hirai, Takahiko Aoyama, Yasuhiro Tsuji, Kazuko Ino, Makoto Ikejiri, Isao Tawara, Takuya Iwamoto","doi":"10.1007/s13318-024-00915-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>A pharmacokinetic model has been developed to quantify the drug-drug interactions of tacrolimus with concentration-dependent inhibition of cytochrome P450 (CYP) 3A4 from voriconazole and clarithromycin based on the CYP3A5 and CYP2C19 genotypes.</p><p><strong>Methods: </strong>This retrospective study recruited unrelated bone marrow transplant recipients receiving oral tacrolimus concomitantly with voriconazole and clarithromycin. The published population pharmacokinetic model that implemented genotypes of CYP3A5 (tacrolimus) and CYP2C19 (voriconazole) was integrated. The tested CYP3A4 inhibition models (Sigmoid efficacy maximum [E<sub>max</sub>], E<sub>max</sub>, log-linear, and linear) were a function of competitive inhibition of voriconazole and mechanism-based inhibition of clarithromycin in a virtual enzyme compartment.</p><p><strong>Results: </strong>The total tacrolimus trough concentrations were 119 points, with a median of 4.3 (range: 2.0-9.9) ng/mL (n = 3). The final model comprised the Sigmoid E<sub>max</sub> model for voriconazole and clarithromycin, which depicted time-course alterations in tacrolimus concentration and clearance when given voriconazole and clarithromycin.</p><p><strong>Conclusions: </strong>These findings could facilitate the model-informed precision dosing of tacrolimus after unrelated bone marrow transplant.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetic Model of Drug Interaction of Tacrolimus with Combined Administration of CYP3A4 Inhibitors Voriconazole and Clarithromycin After Bone Marrow Transplantation.\",\"authors\":\"Toshinori Hirai, Takahiko Aoyama, Yasuhiro Tsuji, Kazuko Ino, Makoto Ikejiri, Isao Tawara, Takuya Iwamoto\",\"doi\":\"10.1007/s13318-024-00915-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>A pharmacokinetic model has been developed to quantify the drug-drug interactions of tacrolimus with concentration-dependent inhibition of cytochrome P450 (CYP) 3A4 from voriconazole and clarithromycin based on the CYP3A5 and CYP2C19 genotypes.</p><p><strong>Methods: </strong>This retrospective study recruited unrelated bone marrow transplant recipients receiving oral tacrolimus concomitantly with voriconazole and clarithromycin. The published population pharmacokinetic model that implemented genotypes of CYP3A5 (tacrolimus) and CYP2C19 (voriconazole) was integrated. The tested CYP3A4 inhibition models (Sigmoid efficacy maximum [E<sub>max</sub>], E<sub>max</sub>, log-linear, and linear) were a function of competitive inhibition of voriconazole and mechanism-based inhibition of clarithromycin in a virtual enzyme compartment.</p><p><strong>Results: </strong>The total tacrolimus trough concentrations were 119 points, with a median of 4.3 (range: 2.0-9.9) ng/mL (n = 3). The final model comprised the Sigmoid E<sub>max</sub> model for voriconazole and clarithromycin, which depicted time-course alterations in tacrolimus concentration and clearance when given voriconazole and clarithromycin.</p><p><strong>Conclusions: </strong>These findings could facilitate the model-informed precision dosing of tacrolimus after unrelated bone marrow transplant.</p>\",\"PeriodicalId\":11939,\"journal\":{\"name\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13318-024-00915-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-024-00915-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Pharmacokinetic Model of Drug Interaction of Tacrolimus with Combined Administration of CYP3A4 Inhibitors Voriconazole and Clarithromycin After Bone Marrow Transplantation.
Background and objectives: A pharmacokinetic model has been developed to quantify the drug-drug interactions of tacrolimus with concentration-dependent inhibition of cytochrome P450 (CYP) 3A4 from voriconazole and clarithromycin based on the CYP3A5 and CYP2C19 genotypes.
Methods: This retrospective study recruited unrelated bone marrow transplant recipients receiving oral tacrolimus concomitantly with voriconazole and clarithromycin. The published population pharmacokinetic model that implemented genotypes of CYP3A5 (tacrolimus) and CYP2C19 (voriconazole) was integrated. The tested CYP3A4 inhibition models (Sigmoid efficacy maximum [Emax], Emax, log-linear, and linear) were a function of competitive inhibition of voriconazole and mechanism-based inhibition of clarithromycin in a virtual enzyme compartment.
Results: The total tacrolimus trough concentrations were 119 points, with a median of 4.3 (range: 2.0-9.9) ng/mL (n = 3). The final model comprised the Sigmoid Emax model for voriconazole and clarithromycin, which depicted time-course alterations in tacrolimus concentration and clearance when given voriconazole and clarithromycin.
Conclusions: These findings could facilitate the model-informed precision dosing of tacrolimus after unrelated bone marrow transplant.
期刊介绍:
Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences.
Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.