Naohide Fujita, Andrew Bondoc, Sergio Simoes, Joji Ishida, Michael S Taccone, Amanda Luck, Dilakshan Srikanthan, Robert Siddaway, Adrian Levine, Nesrin Sabha, Stacey Krumholtz, Akihide Kondo, Hajime Arai, Christian Smith, Paul McDonald, Cynthia Hawkins, Shoukat Dedhar, James Rutka
{"title":"组蛋白去乙酰化酶和碳酸酐酶9抑制剂联合治疗实验性弥漫性内生性桥脑胶质瘤显示出治疗潜力。","authors":"Naohide Fujita, Andrew Bondoc, Sergio Simoes, Joji Ishida, Michael S Taccone, Amanda Luck, Dilakshan Srikanthan, Robert Siddaway, Adrian Levine, Nesrin Sabha, Stacey Krumholtz, Akihide Kondo, Hajime Arai, Christian Smith, Paul McDonald, Cynthia Hawkins, Shoukat Dedhar, James Rutka","doi":"10.1007/s10014-024-00493-w","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse intrinsic pontine glioma (DIPG) remains a significant therapeutic challenge due to the lack of effective and safe treatment options. This study explores the potential of combining histone deacetylase (HDAC) and carbonic anhydrase 9 (CA9) inhibitors in treating DIPG. Analysis of RNA sequencing data and tumor tissue from patient samples for the expression of the carbonic anhydrase family and hypoxia signaling pathway activity revealed clinical relevance for targeting CA9 in DIPG. A synergy screen was conducted using CA9 inhibitor SLC-0111 and HDAC inhibitors panobinostat, vorinostat, entinostat, and pyroxamide. The combination of SLC-0111 and pyroxamide demonstrated the highest synergy and was selected for further analysis. Combining SLC-0111 and pyroxamide effectively inhibited DIPG cell proliferation, reduced cell migration and invasion potential, and enhanced histone acetylation, leading to decreased cell population in S Phase. Additionally, the combination therapy induced a greater reduction in intracellular pH than either agent alone. Data from this study suggest that the combination of SLC-0111 and pyroxamide holds promise for treating experimental DIPG, and further investigation of this combination therapy in preclinical models is warranted to evaluate its potential as a viable treatment for DIPG.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination treatment with histone deacetylase and carbonic anhydrase 9 inhibitors shows therapeutic potential in experimental diffuse intrinsic pontine glioma.\",\"authors\":\"Naohide Fujita, Andrew Bondoc, Sergio Simoes, Joji Ishida, Michael S Taccone, Amanda Luck, Dilakshan Srikanthan, Robert Siddaway, Adrian Levine, Nesrin Sabha, Stacey Krumholtz, Akihide Kondo, Hajime Arai, Christian Smith, Paul McDonald, Cynthia Hawkins, Shoukat Dedhar, James Rutka\",\"doi\":\"10.1007/s10014-024-00493-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffuse intrinsic pontine glioma (DIPG) remains a significant therapeutic challenge due to the lack of effective and safe treatment options. This study explores the potential of combining histone deacetylase (HDAC) and carbonic anhydrase 9 (CA9) inhibitors in treating DIPG. Analysis of RNA sequencing data and tumor tissue from patient samples for the expression of the carbonic anhydrase family and hypoxia signaling pathway activity revealed clinical relevance for targeting CA9 in DIPG. A synergy screen was conducted using CA9 inhibitor SLC-0111 and HDAC inhibitors panobinostat, vorinostat, entinostat, and pyroxamide. The combination of SLC-0111 and pyroxamide demonstrated the highest synergy and was selected for further analysis. Combining SLC-0111 and pyroxamide effectively inhibited DIPG cell proliferation, reduced cell migration and invasion potential, and enhanced histone acetylation, leading to decreased cell population in S Phase. Additionally, the combination therapy induced a greater reduction in intracellular pH than either agent alone. Data from this study suggest that the combination of SLC-0111 and pyroxamide holds promise for treating experimental DIPG, and further investigation of this combination therapy in preclinical models is warranted to evaluate its potential as a viable treatment for DIPG.</p>\",\"PeriodicalId\":9226,\"journal\":{\"name\":\"Brain Tumor Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Tumor Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10014-024-00493-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Tumor Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10014-024-00493-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Combination treatment with histone deacetylase and carbonic anhydrase 9 inhibitors shows therapeutic potential in experimental diffuse intrinsic pontine glioma.
Diffuse intrinsic pontine glioma (DIPG) remains a significant therapeutic challenge due to the lack of effective and safe treatment options. This study explores the potential of combining histone deacetylase (HDAC) and carbonic anhydrase 9 (CA9) inhibitors in treating DIPG. Analysis of RNA sequencing data and tumor tissue from patient samples for the expression of the carbonic anhydrase family and hypoxia signaling pathway activity revealed clinical relevance for targeting CA9 in DIPG. A synergy screen was conducted using CA9 inhibitor SLC-0111 and HDAC inhibitors panobinostat, vorinostat, entinostat, and pyroxamide. The combination of SLC-0111 and pyroxamide demonstrated the highest synergy and was selected for further analysis. Combining SLC-0111 and pyroxamide effectively inhibited DIPG cell proliferation, reduced cell migration and invasion potential, and enhanced histone acetylation, leading to decreased cell population in S Phase. Additionally, the combination therapy induced a greater reduction in intracellular pH than either agent alone. Data from this study suggest that the combination of SLC-0111 and pyroxamide holds promise for treating experimental DIPG, and further investigation of this combination therapy in preclinical models is warranted to evaluate its potential as a viable treatment for DIPG.
期刊介绍:
Brain Tumor Pathology is the official journal of the Japan Society of Brain Tumor Pathology. This international journal documents the latest research and topical debate in all clinical and experimental fields relating to brain tumors, especially brain tumor pathology. The journal has been published since 1983 and has been recognized worldwide as a unique journal of high quality. The journal welcomes the submission of manuscripts from any country. Membership in the society is not a prerequisite for submission. The journal publishes original articles, case reports, rapid short communications, instructional lectures, review articles, letters to the editor, and topics.Review articles and Topics may be recommended at the annual meeting of the Japan Society of Brain Tumor Pathology. All contributions should be aimed at promoting international scientific collaboration.