{"title":"在沸石合成过程中捕捉不同的中间相。","authors":"Jinjin Zeng, German Sastre, Suk Bong Hong","doi":"10.1021/jacs.4c07414","DOIUrl":null,"url":null,"abstract":"<p><p>Despite extensive efforts over the past several decades, the current mechanistic understanding of zeolite crystallization is still far from satisfactory, thus precluding the synthesis of designer zeolites. Here we show that the nucleation and in situ transformation pathways during the synthesis of medium-pore zeolite TNU-9 can be altered by controlling the extent of cooperative structure direction between Na<sup>+</sup> and Cs<sup>+</sup> ions in the presence of 1,4-bis(<i>N</i>-methylpyrrolidinium)butane cations as an organic structure-directing agent. The intermediate phase selectivity was found to change from bikitaite to analcime to layered MCM-22 precursor when the gel Na/Cs ratio was adjusted to 7, 15, and 20, respectively. We also show that the transformation of bikitaite into TNU-9 begins at the surface of intermediate crystals, unlike that of analcime and MCM-22 precursor by a dissolution-recrystallization process. The force field simulation results suggest that the nucleation of different intermediate phases is not thermodynamically but kinetically controlled. This study provides a new basis for advancing the fundamental understanding of zeolite crystallization pathways.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capturing Different Intermediate Phases during Zeolite Synthesis.\",\"authors\":\"Jinjin Zeng, German Sastre, Suk Bong Hong\",\"doi\":\"10.1021/jacs.4c07414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite extensive efforts over the past several decades, the current mechanistic understanding of zeolite crystallization is still far from satisfactory, thus precluding the synthesis of designer zeolites. Here we show that the nucleation and in situ transformation pathways during the synthesis of medium-pore zeolite TNU-9 can be altered by controlling the extent of cooperative structure direction between Na<sup>+</sup> and Cs<sup>+</sup> ions in the presence of 1,4-bis(<i>N</i>-methylpyrrolidinium)butane cations as an organic structure-directing agent. The intermediate phase selectivity was found to change from bikitaite to analcime to layered MCM-22 precursor when the gel Na/Cs ratio was adjusted to 7, 15, and 20, respectively. We also show that the transformation of bikitaite into TNU-9 begins at the surface of intermediate crystals, unlike that of analcime and MCM-22 precursor by a dissolution-recrystallization process. The force field simulation results suggest that the nucleation of different intermediate phases is not thermodynamically but kinetically controlled. This study provides a new basis for advancing the fundamental understanding of zeolite crystallization pathways.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c07414\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c07414","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Capturing Different Intermediate Phases during Zeolite Synthesis.
Despite extensive efforts over the past several decades, the current mechanistic understanding of zeolite crystallization is still far from satisfactory, thus precluding the synthesis of designer zeolites. Here we show that the nucleation and in situ transformation pathways during the synthesis of medium-pore zeolite TNU-9 can be altered by controlling the extent of cooperative structure direction between Na+ and Cs+ ions in the presence of 1,4-bis(N-methylpyrrolidinium)butane cations as an organic structure-directing agent. The intermediate phase selectivity was found to change from bikitaite to analcime to layered MCM-22 precursor when the gel Na/Cs ratio was adjusted to 7, 15, and 20, respectively. We also show that the transformation of bikitaite into TNU-9 begins at the surface of intermediate crystals, unlike that of analcime and MCM-22 precursor by a dissolution-recrystallization process. The force field simulation results suggest that the nucleation of different intermediate phases is not thermodynamically but kinetically controlled. This study provides a new basis for advancing the fundamental understanding of zeolite crystallization pathways.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.