野生拟南芥植物物候学的遗传变异。

Victoria L DeLeo, David L Des Marais, Claire M Lorts, Thomas E Juenger, Jesse R Lasky
{"title":"野生拟南芥植物物候学的遗传变异。","authors":"Victoria L DeLeo, David L Des Marais, Claire M Lorts, Thomas E Juenger, Jesse R Lasky","doi":"10.1101/2024.09.02.610887","DOIUrl":null,"url":null,"abstract":"<p><p>Phenology and the timing of development are often under selection. However, the relative contributions of genotype, environment, and prior developmental transitions to variance in the phenology of wild plants is largely unknown. Individual components of phenology (e.g., germination) might be loosely related with the timing of maturation due to variation in prior developmental transitions. Given widespread evidence that genetic variation in life history is adaptive, we investigated to what degree experimentally measured genetic variation in Arabidopsis phenology predicts phenology of plants in the wild. As a proxy of phenology, we obtained collection dates from nature of 227 naturally inbred <i>Arabidopsis thaliana</i> accessions from across Eurasia. We compared this phenology in nature with experimental data on the descendant inbred lines that we synthesized from two new and 155 published controlled experiments. We tested whether the genetic variation in flowering and germination timing from experiments predicted the phenology of the same lines in nature. We found that genetic variation in phenology from controlled experiments significantly predicts day of collection from wild individuals, as a proxy for date of flowering, across Eurasia. However, local variation in collection dates within a region was not explained by genetic variance in phenology in experiments, suggesting high plasticity across small-scale environmental gradients or complex interactions between the timing of different developmental transitions. While experiments have shown phenology is under selection, understanding the subtle environmental and stochastic effects on phenology may help to clarify the heritability and evolution of phenological traits in nature.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398302/pdf/","citationCount":"0","resultStr":"{\"title\":\"Does genetic variation in controlled experiments predict phenology of wild plants?\",\"authors\":\"Victoria L DeLeo, David L Des Marais, Claire M Lorts, Thomas E Juenger, Jesse R Lasky\",\"doi\":\"10.1101/2024.09.02.610887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phenology and the timing of development are often under selection. However, the relative contributions of genotype, environment, and prior developmental transitions to variance in the phenology of wild plants is largely unknown. Individual components of phenology (e.g., germination) might be loosely related with the timing of maturation due to variation in prior developmental transitions. Given widespread evidence that genetic variation in life history is adaptive, we investigated to what degree experimentally measured genetic variation in Arabidopsis phenology predicts phenology of plants in the wild. As a proxy of phenology, we obtained collection dates from nature of 227 naturally inbred <i>Arabidopsis thaliana</i> accessions from across Eurasia. We compared this phenology in nature with experimental data on the descendant inbred lines that we synthesized from two new and 155 published controlled experiments. We tested whether the genetic variation in flowering and germination timing from experiments predicted the phenology of the same lines in nature. We found that genetic variation in phenology from controlled experiments significantly predicts day of collection from wild individuals, as a proxy for date of flowering, across Eurasia. However, local variation in collection dates within a region was not explained by genetic variance in phenology in experiments, suggesting high plasticity across small-scale environmental gradients or complex interactions between the timing of different developmental transitions. While experiments have shown phenology is under selection, understanding the subtle environmental and stochastic effects on phenology may help to clarify the heritability and evolution of phenological traits in nature.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398302/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.02.610887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.02.610887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物候和生长发育的时间往往受到选择的影响,但与此同时,物候和生长发育的时间又通过控制性状在不同季节的表达方式而影响对其他性状的选择。当植物在受控环境中生长时,其物候往往表现出很高的自然遗传变异。野生植物种群内的发芽和开花时间仍然存在相当大的差异,而遗传对野生植物物候变化的贡献在很大程度上还不为人所知。我们从自然界获得了拟南芥自然近交系的采集日期,并将其与我们从两个新的和 155 个已发表的对照实验中综合的后代近交系的实验数据进行了比较。我们测试了实验中开花和发芽时间的遗传变异是否能预测自然界中相同近交系的物候。我们发现,即使用累积光热单位测量采集日期,对照实验中的物候遗传变异也能显著但微弱地预测野外采集日。我们发现,实验花期育种值与标本馆采集的原产地野生花期相关。然而,实验中的遗传变异无法解释一个地区内采集日期的局部差异,这表明小范围环境梯度的可塑性很强。自然种群中这种明显的低遗传率可能表明,物候适应和物候遗传连锁的出现需要强烈的选择或许多代人的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does genetic variation in controlled experiments predict phenology of wild plants?

Phenology and the timing of development are often under selection. However, the relative contributions of genotype, environment, and prior developmental transitions to variance in the phenology of wild plants is largely unknown. Individual components of phenology (e.g., germination) might be loosely related with the timing of maturation due to variation in prior developmental transitions. Given widespread evidence that genetic variation in life history is adaptive, we investigated to what degree experimentally measured genetic variation in Arabidopsis phenology predicts phenology of plants in the wild. As a proxy of phenology, we obtained collection dates from nature of 227 naturally inbred Arabidopsis thaliana accessions from across Eurasia. We compared this phenology in nature with experimental data on the descendant inbred lines that we synthesized from two new and 155 published controlled experiments. We tested whether the genetic variation in flowering and germination timing from experiments predicted the phenology of the same lines in nature. We found that genetic variation in phenology from controlled experiments significantly predicts day of collection from wild individuals, as a proxy for date of flowering, across Eurasia. However, local variation in collection dates within a region was not explained by genetic variance in phenology in experiments, suggesting high plasticity across small-scale environmental gradients or complex interactions between the timing of different developmental transitions. While experiments have shown phenology is under selection, understanding the subtle environmental and stochastic effects on phenology may help to clarify the heritability and evolution of phenological traits in nature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信