Pedro P Gonçalves, Cláudia L da Silva, Nuno Bernardes
{"title":"推进癌症治疗:整合可扩展的三维癌症模型、细胞外囊泡和 omics,提高疗效。","authors":"Pedro P Gonçalves, Cláudia L da Silva, Nuno Bernardes","doi":"10.1016/bs.acr.2024.07.001","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.</p>","PeriodicalId":94294,"journal":{"name":"Advances in cancer research","volume":"163 ","pages":"137-185"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy.\",\"authors\":\"Pedro P Gonçalves, Cláudia L da Silva, Nuno Bernardes\",\"doi\":\"10.1016/bs.acr.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.</p>\",\"PeriodicalId\":94294,\"journal\":{\"name\":\"Advances in cancer research\",\"volume\":\"163 \",\"pages\":\"137-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in cancer research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.acr.2024.07.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acr.2024.07.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
癌症仍然是人类健康面临的最大挑战之一。然而,与其他治疗干预措施相比,抗癌药物的损耗率最高。部分原因在于体外模型的普遍使用,对体内环境的再现潜力有限。三维(3D)模型,如肿瘤球体和有机体,提供了许多研究机会,以满足开发能够更准确地模拟癌症生物学和耐药性特征的模型的迫切需要。然而,它们在高通量临床前研究中的广泛应用取决于可扩展的制造工艺,以支持大规模治疗药物筛选和多组学方法对其进行全面的细胞和分子表征。细胞外囊泡 (EV) 作为一种新兴的药物递送系统 (DDS),将从在真实癌症模型中进行的此类筛选中受益匪浅。此外,将这些纳米药物与三维癌症模型和全息图谱分析相结合,有可能加深我们对 EV 介导的抗癌作用的理解。在本章中,我们将概述癌症研究中使用的现有三维模型(即球形体和有机体)、其可扩展生产中的创新,并讨论全局组学如何促进这些模型在药物测试不同阶段的实施。我们还探讨了EV如何推动癌症疗法中的药物输送,以及三维癌症模型和omics方法之间的协同作用如何在这一过程中获益。
Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy.
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.