{"title":"评估非侵入性指数在预测未经治疗的丙型肝炎病毒携带者肝纤维化方面的诊断效果的组合。","authors":"Navneet Kaur, Gitanjali Goyal, Ravinder Garg, Chaitanya Tapasvi, Umit Demirbaga","doi":"10.5662/wjm.v14.i3.91058","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatitis C virus (HCV) infection progresses through various phases, starting with inflammation and ending with hepatocellular carcinoma. There are several invasive and non-invasive methods to diagnose chronic HCV infection. The invasive methods have their benefits but are linked to morbidity and complications. Thus, it is important to analyze the potential of non-invasive methods as an alternative. Shear wave elastography (SWE) is a non-invasive imaging tool widely validated in clinical and research studies as a surrogate marker of liver fibrosis. Liver fibrosis determination by invasive liver biopsy and non-invasive SWE agree closely in clinical studies and therefore both are gold standards.</p><p><strong>Aim: </strong>To analyzed the diagnostic efficacy of non-invasive indices [serum fibronectin, aspartate aminotransferase to platelet ratio index (APRI), alanine aminotransferase ratio (AAR), and fibrosis-4 (FIB-4)] in relation to SWE. We have used an Artificial Intelligence method to predict the severity of liver fibrosis and uncover the complex relationship between non-invasive indices and fibrosis severity.</p><p><strong>Methods: </strong>We have conducted a hospital-based study considering 100 untreated patients detected as HCV positive using a quantitative Real-Time Polymerase Chain Reaction assay. We performed statistical and probabilistic analyses to determine the relationship between non-invasive indices and the severity of fibrosis. We also used standard diagnostic methods to measure the diagnostic accuracy for all the subjects.</p><p><strong>Results: </strong>The results of our study showed that fibronectin is a highly accurate diagnostic tool for predicting fibrosis stages (mild, moderate, and severe). This was based on its sensitivity (100%, 92.2%, 96.2%), specificity (96%, 100%, 98.6%), Youden's index (0.960, 0.922, 0.948), area under receiver operating characteristic curve (0.999, 0.993, 0.922), and Likelihood test (LR+ > 10 and LR- < 0.1). Additionally, our Bayesian Network analysis revealed that fibronectin (> 200), AAR (> 1), APRI (> 3), and FIB-4 (> 4) were all strongly associated with patients who had severe fibrosis, with a 100% probability.</p><p><strong>Conclusion: </strong>We have found a strong correlation between fibronectin and liver fibrosis progression in HCV patients. Additionally, we observed that the severity of liver fibrosis increases with an increase in the non-invasive indices that we investigated.</p>","PeriodicalId":94271,"journal":{"name":"World journal of methodology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ensemble for evaluating diagnostic efficacy of non-invasive indices in predicting liver fibrosis in untreated hepatitis C virus population.\",\"authors\":\"Navneet Kaur, Gitanjali Goyal, Ravinder Garg, Chaitanya Tapasvi, Umit Demirbaga\",\"doi\":\"10.5662/wjm.v14.i3.91058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hepatitis C virus (HCV) infection progresses through various phases, starting with inflammation and ending with hepatocellular carcinoma. There are several invasive and non-invasive methods to diagnose chronic HCV infection. The invasive methods have their benefits but are linked to morbidity and complications. Thus, it is important to analyze the potential of non-invasive methods as an alternative. Shear wave elastography (SWE) is a non-invasive imaging tool widely validated in clinical and research studies as a surrogate marker of liver fibrosis. Liver fibrosis determination by invasive liver biopsy and non-invasive SWE agree closely in clinical studies and therefore both are gold standards.</p><p><strong>Aim: </strong>To analyzed the diagnostic efficacy of non-invasive indices [serum fibronectin, aspartate aminotransferase to platelet ratio index (APRI), alanine aminotransferase ratio (AAR), and fibrosis-4 (FIB-4)] in relation to SWE. We have used an Artificial Intelligence method to predict the severity of liver fibrosis and uncover the complex relationship between non-invasive indices and fibrosis severity.</p><p><strong>Methods: </strong>We have conducted a hospital-based study considering 100 untreated patients detected as HCV positive using a quantitative Real-Time Polymerase Chain Reaction assay. We performed statistical and probabilistic analyses to determine the relationship between non-invasive indices and the severity of fibrosis. We also used standard diagnostic methods to measure the diagnostic accuracy for all the subjects.</p><p><strong>Results: </strong>The results of our study showed that fibronectin is a highly accurate diagnostic tool for predicting fibrosis stages (mild, moderate, and severe). This was based on its sensitivity (100%, 92.2%, 96.2%), specificity (96%, 100%, 98.6%), Youden's index (0.960, 0.922, 0.948), area under receiver operating characteristic curve (0.999, 0.993, 0.922), and Likelihood test (LR+ > 10 and LR- < 0.1). Additionally, our Bayesian Network analysis revealed that fibronectin (> 200), AAR (> 1), APRI (> 3), and FIB-4 (> 4) were all strongly associated with patients who had severe fibrosis, with a 100% probability.</p><p><strong>Conclusion: </strong>We have found a strong correlation between fibronectin and liver fibrosis progression in HCV patients. Additionally, we observed that the severity of liver fibrosis increases with an increase in the non-invasive indices that we investigated.</p>\",\"PeriodicalId\":94271,\"journal\":{\"name\":\"World journal of methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5662/wjm.v14.i3.91058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5662/wjm.v14.i3.91058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ensemble for evaluating diagnostic efficacy of non-invasive indices in predicting liver fibrosis in untreated hepatitis C virus population.
Background: Hepatitis C virus (HCV) infection progresses through various phases, starting with inflammation and ending with hepatocellular carcinoma. There are several invasive and non-invasive methods to diagnose chronic HCV infection. The invasive methods have their benefits but are linked to morbidity and complications. Thus, it is important to analyze the potential of non-invasive methods as an alternative. Shear wave elastography (SWE) is a non-invasive imaging tool widely validated in clinical and research studies as a surrogate marker of liver fibrosis. Liver fibrosis determination by invasive liver biopsy and non-invasive SWE agree closely in clinical studies and therefore both are gold standards.
Aim: To analyzed the diagnostic efficacy of non-invasive indices [serum fibronectin, aspartate aminotransferase to platelet ratio index (APRI), alanine aminotransferase ratio (AAR), and fibrosis-4 (FIB-4)] in relation to SWE. We have used an Artificial Intelligence method to predict the severity of liver fibrosis and uncover the complex relationship between non-invasive indices and fibrosis severity.
Methods: We have conducted a hospital-based study considering 100 untreated patients detected as HCV positive using a quantitative Real-Time Polymerase Chain Reaction assay. We performed statistical and probabilistic analyses to determine the relationship between non-invasive indices and the severity of fibrosis. We also used standard diagnostic methods to measure the diagnostic accuracy for all the subjects.
Results: The results of our study showed that fibronectin is a highly accurate diagnostic tool for predicting fibrosis stages (mild, moderate, and severe). This was based on its sensitivity (100%, 92.2%, 96.2%), specificity (96%, 100%, 98.6%), Youden's index (0.960, 0.922, 0.948), area under receiver operating characteristic curve (0.999, 0.993, 0.922), and Likelihood test (LR+ > 10 and LR- < 0.1). Additionally, our Bayesian Network analysis revealed that fibronectin (> 200), AAR (> 1), APRI (> 3), and FIB-4 (> 4) were all strongly associated with patients who had severe fibrosis, with a 100% probability.
Conclusion: We have found a strong correlation between fibronectin and liver fibrosis progression in HCV patients. Additionally, we observed that the severity of liver fibrosis increases with an increase in the non-invasive indices that we investigated.