Altea Lorenzon, Stephen Z Liu, Xiao Jiang, Grace J Gang, J Webster Stayman, Grace J Gang
{"title":"光谱 CT 的联合材料分解与散射估计","authors":"Altea Lorenzon, Stephen Z Liu, Xiao Jiang, Grace J Gang, J Webster Stayman, Grace J Gang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate scatter correction is essential to obtain highquality reconstructions in computed tomography. While many correction strategies for this longstanding issue have been developed, additional efforts may be required for spectral CT imaging - which is particularly sensitive to unmodeled biases. In this work we explore a joint estimation approach within a one-step model-based material decomposition framework to simultaneously estimate material densities and scatter profiles in spectral CT. The method is applied to simulated phantom data obtained using a parametric additive scatter mode, and compared to the unmodeled scatter scenario. In these preliminary experiments, We find that this joint estimation approach has the potential to significantly reduce artifacts associated with unmodeled scatter and to improve material density estimates.</p>","PeriodicalId":90477,"journal":{"name":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","volume":"2024 ","pages":"186-189"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391857/pdf/","citationCount":"0","resultStr":"{\"title\":\"Joint Material Decomposition and Scatter Estimation for Spectral CT.\",\"authors\":\"Altea Lorenzon, Stephen Z Liu, Xiao Jiang, Grace J Gang, J Webster Stayman, Grace J Gang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate scatter correction is essential to obtain highquality reconstructions in computed tomography. While many correction strategies for this longstanding issue have been developed, additional efforts may be required for spectral CT imaging - which is particularly sensitive to unmodeled biases. In this work we explore a joint estimation approach within a one-step model-based material decomposition framework to simultaneously estimate material densities and scatter profiles in spectral CT. The method is applied to simulated phantom data obtained using a parametric additive scatter mode, and compared to the unmodeled scatter scenario. In these preliminary experiments, We find that this joint estimation approach has the potential to significantly reduce artifacts associated with unmodeled scatter and to improve material density estimates.</p>\",\"PeriodicalId\":90477,\"journal\":{\"name\":\"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography\",\"volume\":\"2024 \",\"pages\":\"186-189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391857/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Material Decomposition and Scatter Estimation for Spectral CT.
Accurate scatter correction is essential to obtain highquality reconstructions in computed tomography. While many correction strategies for this longstanding issue have been developed, additional efforts may be required for spectral CT imaging - which is particularly sensitive to unmodeled biases. In this work we explore a joint estimation approach within a one-step model-based material decomposition framework to simultaneously estimate material densities and scatter profiles in spectral CT. The method is applied to simulated phantom data obtained using a parametric additive scatter mode, and compared to the unmodeled scatter scenario. In these preliminary experiments, We find that this joint estimation approach has the potential to significantly reduce artifacts associated with unmodeled scatter and to improve material density estimates.