用于监测病变生长的纵向脊柱 CT 图像注册

Malika Sanhinova, Nazim Haouchine, Steve D Pieper, William M Wells, Tracy A Balboni, Alexander Spektor, Mai Anh Huynh, Jeffrey P Guenette, Bryan Czajkowski, Sarah Caplan, Patrick Doyle, Heejoo Kang, David B Hackney, Ron N Alkalay
{"title":"用于监测病变生长的纵向脊柱 CT 图像注册","authors":"Malika Sanhinova, Nazim Haouchine, Steve D Pieper, William M Wells, Tracy A Balboni, Alexander Spektor, Mai Anh Huynh, Jeffrey P Guenette, Bryan Czajkowski, Sarah Caplan, Patrick Doyle, Heejoo Kang, David B Hackney, Ron N Alkalay","doi":"10.1117/12.3006621","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and reliable registration of longitudinal spine images is essential for assessment of disease progression and surgical outcome. Implementing a fully automatic and robust registration is crucial for clinical use, however, it is challenging due to substantial change in shape and appearance due to lesions. In this paper we present a novel method to automatically align longitudinal spine CTs and accurately assess lesion progression. Our method follows a two-step pipeline where vertebrae are first automatically localized, labeled and 3D surfaces are generated using a deep learning model, then longitudinally aligned using a Gaussian mixture model surface registration. We tested our approach on 37 vertebrae, from 5 patients, with baseline CTs and 3, 6, and 12 months follow-ups leading to 111 registrations. Our experiment showed accurate registration with an average Hausdorff distance of 0.65 mm and average Dice score of 0.92.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12926 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416858/pdf/","citationCount":"0","resultStr":"{\"title\":\"Registration of Longitudinal Spine CTs for Monitoring Lesion Growth.\",\"authors\":\"Malika Sanhinova, Nazim Haouchine, Steve D Pieper, William M Wells, Tracy A Balboni, Alexander Spektor, Mai Anh Huynh, Jeffrey P Guenette, Bryan Czajkowski, Sarah Caplan, Patrick Doyle, Heejoo Kang, David B Hackney, Ron N Alkalay\",\"doi\":\"10.1117/12.3006621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate and reliable registration of longitudinal spine images is essential for assessment of disease progression and surgical outcome. Implementing a fully automatic and robust registration is crucial for clinical use, however, it is challenging due to substantial change in shape and appearance due to lesions. In this paper we present a novel method to automatically align longitudinal spine CTs and accurately assess lesion progression. Our method follows a two-step pipeline where vertebrae are first automatically localized, labeled and 3D surfaces are generated using a deep learning model, then longitudinally aligned using a Gaussian mixture model surface registration. We tested our approach on 37 vertebrae, from 5 patients, with baseline CTs and 3, 6, and 12 months follow-ups leading to 111 registrations. Our experiment showed accurate registration with an average Hausdorff distance of 0.65 mm and average Dice score of 0.92.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"12926 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3006621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确可靠的纵向脊柱图像配准对于评估疾病进展和手术效果至关重要。然而,由于病变导致的形状和外观的巨大变化,实现全自动和稳健的配准对临床应用至关重要。在本文中,我们介绍了一种自动对齐纵向脊柱 CT 并准确评估病变进展的新方法。我们的方法采用两步流水线,首先使用深度学习模型对椎体进行自动定位、标记并生成三维表面,然后使用高斯混合模型表面配准进行纵向配准。我们在 5 名患者的 37 个椎体上测试了我们的方法,这些椎体分别来自基线 CT 和 3、6 和 12 个月的随访,共进行了 111 次注册。实验结果表明,平均豪斯多夫距离(Hausdorff distance)为 0.65 毫米,平均骰子得分(Dice score)为 0.92。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Registration of Longitudinal Spine CTs for Monitoring Lesion Growth.

Accurate and reliable registration of longitudinal spine images is essential for assessment of disease progression and surgical outcome. Implementing a fully automatic and robust registration is crucial for clinical use, however, it is challenging due to substantial change in shape and appearance due to lesions. In this paper we present a novel method to automatically align longitudinal spine CTs and accurately assess lesion progression. Our method follows a two-step pipeline where vertebrae are first automatically localized, labeled and 3D surfaces are generated using a deep learning model, then longitudinally aligned using a Gaussian mixture model surface registration. We tested our approach on 37 vertebrae, from 5 patients, with baseline CTs and 3, 6, and 12 months follow-ups leading to 111 registrations. Our experiment showed accurate registration with an average Hausdorff distance of 0.65 mm and average Dice score of 0.92.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信