Hanna Jardel, Kristen M Rappazzo, Thomas J Luben, Corinna Keeler, Brooke S Staley, Cavin K Ward-Caviness, Cassandra R O'Lenick, Meghan E Rebuli, Yuzhi Xi, Michelle Hernandez, Ann Chelminski, Ilona Jaspers, Ana G Rappold, Radhika Dhingra
{"title":"妊娠期和产后暴露于野火烟雾以及早年长期使用呼吸道药物。","authors":"Hanna Jardel, Kristen M Rappazzo, Thomas J Luben, Corinna Keeler, Brooke S Staley, Cavin K Ward-Caviness, Cassandra R O'Lenick, Meghan E Rebuli, Yuzhi Xi, Michelle Hernandez, Ann Chelminski, Ilona Jaspers, Ana G Rappold, Radhika Dhingra","doi":"10.1088/2752-5309/ad748c","DOIUrl":null,"url":null,"abstract":"<p><p>As wildfire frequency and severity increases, smoke exposures will cause increasingly more adverse respiratory effects. While acute respiratory effects of smoke exposure have been documented in children, longer term sequelae are largely unstudied. Our objective here was to examine the association between gestational and postnatal exposure to wildfire smoke and prolonged use of prescription medication for respiratory conditions in early childhood. Using Merative MarketScan claims data, we created cohorts of term children born in western states between 1 January 2010-31 December 2014 followed for at least three years. Using NOAA Hazard Mapping System data, we determined the average number of days a week that >25% of the population in a metropolitan statistical area (MSA) was covered by smoke within each exposure period. The exposure periods were defined by trimester and two 12 week postnatal periods. Medication use was based on respiratory indication (upper respiratory, lower respiratory, or any respiratory condition) and categorized into outcomes of prolonged use (⩾30 d use) (PU) and multiple prolonged uses (at least two prolonged uses) (MPU). We used logistic regression models with random intercepts for MSAs adjusted for child sex, birth season, and birth year. Associations differed by exposure period and respiratory outcome, with elevated risk of MPU of lower respiratory medications following exposure in the third trimester and the first 12 postnatal weeks (RR 1.15, 95% CI 0.98, 1.35; RR 1.21, 95% CI 1.05, 1.40, respectively). Exposure in the third trimester was associated with an increase in MPU of any respiratory among males infants only (male RR 1.22, 95% CI 1.00, 1.50; female RR 0.93, 95% CI 0.66, 1.31). Through novel use of prescription claims data, this work identifies critical developmental windows in the 3rd trimester and first 12 postnatal weeks during which environmental inhalational disaster events may impact longer-term respiratory health.</p>","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":"2 4","pages":"045004"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389793/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gestational and postnatal exposure to wildfire smoke and prolonged use of respiratory medications in early life.\",\"authors\":\"Hanna Jardel, Kristen M Rappazzo, Thomas J Luben, Corinna Keeler, Brooke S Staley, Cavin K Ward-Caviness, Cassandra R O'Lenick, Meghan E Rebuli, Yuzhi Xi, Michelle Hernandez, Ann Chelminski, Ilona Jaspers, Ana G Rappold, Radhika Dhingra\",\"doi\":\"10.1088/2752-5309/ad748c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As wildfire frequency and severity increases, smoke exposures will cause increasingly more adverse respiratory effects. While acute respiratory effects of smoke exposure have been documented in children, longer term sequelae are largely unstudied. Our objective here was to examine the association between gestational and postnatal exposure to wildfire smoke and prolonged use of prescription medication for respiratory conditions in early childhood. Using Merative MarketScan claims data, we created cohorts of term children born in western states between 1 January 2010-31 December 2014 followed for at least three years. Using NOAA Hazard Mapping System data, we determined the average number of days a week that >25% of the population in a metropolitan statistical area (MSA) was covered by smoke within each exposure period. The exposure periods were defined by trimester and two 12 week postnatal periods. Medication use was based on respiratory indication (upper respiratory, lower respiratory, or any respiratory condition) and categorized into outcomes of prolonged use (⩾30 d use) (PU) and multiple prolonged uses (at least two prolonged uses) (MPU). We used logistic regression models with random intercepts for MSAs adjusted for child sex, birth season, and birth year. Associations differed by exposure period and respiratory outcome, with elevated risk of MPU of lower respiratory medications following exposure in the third trimester and the first 12 postnatal weeks (RR 1.15, 95% CI 0.98, 1.35; RR 1.21, 95% CI 1.05, 1.40, respectively). Exposure in the third trimester was associated with an increase in MPU of any respiratory among males infants only (male RR 1.22, 95% CI 1.00, 1.50; female RR 0.93, 95% CI 0.66, 1.31). Through novel use of prescription claims data, this work identifies critical developmental windows in the 3rd trimester and first 12 postnatal weeks during which environmental inhalational disaster events may impact longer-term respiratory health.</p>\",\"PeriodicalId\":72938,\"journal\":{\"name\":\"Environmental research, health : ERH\",\"volume\":\"2 4\",\"pages\":\"045004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389793/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental research, health : ERH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5309/ad748c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental research, health : ERH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5309/ad748c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Gestational and postnatal exposure to wildfire smoke and prolonged use of respiratory medications in early life.
As wildfire frequency and severity increases, smoke exposures will cause increasingly more adverse respiratory effects. While acute respiratory effects of smoke exposure have been documented in children, longer term sequelae are largely unstudied. Our objective here was to examine the association between gestational and postnatal exposure to wildfire smoke and prolonged use of prescription medication for respiratory conditions in early childhood. Using Merative MarketScan claims data, we created cohorts of term children born in western states between 1 January 2010-31 December 2014 followed for at least three years. Using NOAA Hazard Mapping System data, we determined the average number of days a week that >25% of the population in a metropolitan statistical area (MSA) was covered by smoke within each exposure period. The exposure periods were defined by trimester and two 12 week postnatal periods. Medication use was based on respiratory indication (upper respiratory, lower respiratory, or any respiratory condition) and categorized into outcomes of prolonged use (⩾30 d use) (PU) and multiple prolonged uses (at least two prolonged uses) (MPU). We used logistic regression models with random intercepts for MSAs adjusted for child sex, birth season, and birth year. Associations differed by exposure period and respiratory outcome, with elevated risk of MPU of lower respiratory medications following exposure in the third trimester and the first 12 postnatal weeks (RR 1.15, 95% CI 0.98, 1.35; RR 1.21, 95% CI 1.05, 1.40, respectively). Exposure in the third trimester was associated with an increase in MPU of any respiratory among males infants only (male RR 1.22, 95% CI 1.00, 1.50; female RR 0.93, 95% CI 0.66, 1.31). Through novel use of prescription claims data, this work identifies critical developmental windows in the 3rd trimester and first 12 postnatal weeks during which environmental inhalational disaster events may impact longer-term respiratory health.