Dharani Dhar Maddali, Håvard Solvin, Matthias Lippert, Yücel Karabiyik, Gry Dahle, Jon Mikkelsen Hjelmervik, Gabriel Kiss, Ole Jakob Elle, Henrik Brun
{"title":"基于蒙特卡罗的三维超声心动图渲染,用于混合现实引导的房间隔穿刺定位。","authors":"Dharani Dhar Maddali, Håvard Solvin, Matthias Lippert, Yücel Karabiyik, Gry Dahle, Jon Mikkelsen Hjelmervik, Gabriel Kiss, Ole Jakob Elle, Henrik Brun","doi":"10.1080/24699322.2024.2403444","DOIUrl":null,"url":null,"abstract":"<p><p>Catheter-based intervention procedures contain complex maneuvers, and they are often performed using fluoroscopic guidance assisted by 2D and 3D echocardiography viewed on a flat screen that inherently limits depth perception. Emerging mixed reality (MR) technologies, combined with advanced rendering techniques, offer potential enhancement in depth perception and navigational support. The study aims to evaluate a MR-based guidance system for the atrial septal puncture (ASP) procedure utilizing a phantom anatomical model. A novel MR-based guidance system using a modified Monte Carlo-based rendering approach for 3D echocardiographic visualization was introduced and evaluated against standard clinical 3D echocardiographic display on a flat screen. The objective was to guide the ASP procedure by facilitating catheter placement and puncture across four specific atrial septum quadrants. To assess the system's feasibility and performance, a user study involving four experienced interventional cardiologists was conducted using a phantom model. Results show that participants accurately punctured the designated quadrant in 14 out of 16 punctures using MR and 15 out of 16 punctures using the flat screen of the ultrasound machine. The geometric mean puncture time for MR was 31 s and 26 s for flat screen guidance. User experience ratings indicated MR-based guidance to be easier to navigate and locate tents of the atrial septum. The study demonstrates the feasibility of MR-guided atrial septal puncture. User experience data, particularly with respect to navigation, imply potential benefits for more complex procedures and educational purposes. The observed performance difference suggests an associated learning curve for optimal MR utilization.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo-based rendering of 3D echocardiography for mixed reality-guided atrial septal puncture positioning.\",\"authors\":\"Dharani Dhar Maddali, Håvard Solvin, Matthias Lippert, Yücel Karabiyik, Gry Dahle, Jon Mikkelsen Hjelmervik, Gabriel Kiss, Ole Jakob Elle, Henrik Brun\",\"doi\":\"10.1080/24699322.2024.2403444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Catheter-based intervention procedures contain complex maneuvers, and they are often performed using fluoroscopic guidance assisted by 2D and 3D echocardiography viewed on a flat screen that inherently limits depth perception. Emerging mixed reality (MR) technologies, combined with advanced rendering techniques, offer potential enhancement in depth perception and navigational support. The study aims to evaluate a MR-based guidance system for the atrial septal puncture (ASP) procedure utilizing a phantom anatomical model. A novel MR-based guidance system using a modified Monte Carlo-based rendering approach for 3D echocardiographic visualization was introduced and evaluated against standard clinical 3D echocardiographic display on a flat screen. The objective was to guide the ASP procedure by facilitating catheter placement and puncture across four specific atrial septum quadrants. To assess the system's feasibility and performance, a user study involving four experienced interventional cardiologists was conducted using a phantom model. Results show that participants accurately punctured the designated quadrant in 14 out of 16 punctures using MR and 15 out of 16 punctures using the flat screen of the ultrasound machine. The geometric mean puncture time for MR was 31 s and 26 s for flat screen guidance. User experience ratings indicated MR-based guidance to be easier to navigate and locate tents of the atrial septum. The study demonstrates the feasibility of MR-guided atrial septal puncture. User experience data, particularly with respect to navigation, imply potential benefits for more complex procedures and educational purposes. The observed performance difference suggests an associated learning curve for optimal MR utilization.</p>\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2024.2403444\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2024.2403444","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
Monte Carlo-based rendering of 3D echocardiography for mixed reality-guided atrial septal puncture positioning.
Catheter-based intervention procedures contain complex maneuvers, and they are often performed using fluoroscopic guidance assisted by 2D and 3D echocardiography viewed on a flat screen that inherently limits depth perception. Emerging mixed reality (MR) technologies, combined with advanced rendering techniques, offer potential enhancement in depth perception and navigational support. The study aims to evaluate a MR-based guidance system for the atrial septal puncture (ASP) procedure utilizing a phantom anatomical model. A novel MR-based guidance system using a modified Monte Carlo-based rendering approach for 3D echocardiographic visualization was introduced and evaluated against standard clinical 3D echocardiographic display on a flat screen. The objective was to guide the ASP procedure by facilitating catheter placement and puncture across four specific atrial septum quadrants. To assess the system's feasibility and performance, a user study involving four experienced interventional cardiologists was conducted using a phantom model. Results show that participants accurately punctured the designated quadrant in 14 out of 16 punctures using MR and 15 out of 16 punctures using the flat screen of the ultrasound machine. The geometric mean puncture time for MR was 31 s and 26 s for flat screen guidance. User experience ratings indicated MR-based guidance to be easier to navigate and locate tents of the atrial septum. The study demonstrates the feasibility of MR-guided atrial septal puncture. User experience data, particularly with respect to navigation, imply potential benefits for more complex procedures and educational purposes. The observed performance difference suggests an associated learning curve for optimal MR utilization.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.