周期性行波的延迟失稳:本质光谱分析的启示

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lukas Eigentler , Mattia Sensi
{"title":"周期性行波的延迟失稳:本质光谱分析的启示","authors":"Lukas Eigentler ,&nbsp;Mattia Sensi","doi":"10.1016/j.jtbi.2024.111945","DOIUrl":null,"url":null,"abstract":"<div><div>Periodic travelling waves (PTW) are a common solution type of partial differential equations. Such models exhibit multistability of PTWs, typically visualised through the Busse balloon, and parameter changes typically lead to a cascade of wavelength changes through the Busse balloon. In the past, the stability boundaries of the Busse balloon have been used to predict such wavelength changes. Here, motivated by anecdotal evidence from previous work, we provide compelling evidence that the Busse balloon provides insufficient information to predict wavelength changes due to a delayed loss of stability phenomenon. Using two different reaction–advection–diffusion systems, we relate the delay that occurs between the crossing of a stability boundary in the Busse balloon and the occurrence of a wavelength change to features of the essential spectrum of the destabilised PTW. This leads to a predictive framework that can estimate the order of magnitude of such a time delay, which provides a novel “early warning sign” for pattern destabilisation. We illustrate the implementation of the predictive framework to predict under what conditions a wavelength change of a PTW occurs.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324002303/pdfft?md5=3013d4efdcdbd16448a87c3fd0061653&pid=1-s2.0-S0022519324002303-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Delayed loss of stability of periodic travelling waves: Insights from the analysis of essential spectra\",\"authors\":\"Lukas Eigentler ,&nbsp;Mattia Sensi\",\"doi\":\"10.1016/j.jtbi.2024.111945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Periodic travelling waves (PTW) are a common solution type of partial differential equations. Such models exhibit multistability of PTWs, typically visualised through the Busse balloon, and parameter changes typically lead to a cascade of wavelength changes through the Busse balloon. In the past, the stability boundaries of the Busse balloon have been used to predict such wavelength changes. Here, motivated by anecdotal evidence from previous work, we provide compelling evidence that the Busse balloon provides insufficient information to predict wavelength changes due to a delayed loss of stability phenomenon. Using two different reaction–advection–diffusion systems, we relate the delay that occurs between the crossing of a stability boundary in the Busse balloon and the occurrence of a wavelength change to features of the essential spectrum of the destabilised PTW. This leads to a predictive framework that can estimate the order of magnitude of such a time delay, which provides a novel “early warning sign” for pattern destabilisation. We illustrate the implementation of the predictive framework to predict under what conditions a wavelength change of a PTW occurs.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002303/pdfft?md5=3013d4efdcdbd16448a87c3fd0061653&pid=1-s2.0-S0022519324002303-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002303\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

周期性行波(PTW)是偏微分方程的一种常见解法。这类模型表现出 PTW 的多稳定性,通常通过布瑟气球来体现,参数变化通常会导致布瑟气球波长的级联变化。过去,布瑟气球的稳定边界被用来预测这种波长变化。在此,我们根据以前工作中的轶事证据,提供了令人信服的证据,证明布瑟气球提供的信息不足以预测延迟失稳现象导致的波长变化。通过使用两种不同的反应-平流-扩散系统,我们将布塞气球跨越稳定边界与发生波长变化之间的延迟与失稳 PTW 的基本光谱特征联系起来。这就产生了一个预测框架,可以估算出这种时间延迟的数量级,为模式失稳提供了一个新颖的 "预警信号"。我们举例说明了预测框架的实施,以预测在什么条件下会发生 PTW 波长变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delayed loss of stability of periodic travelling waves: Insights from the analysis of essential spectra
Periodic travelling waves (PTW) are a common solution type of partial differential equations. Such models exhibit multistability of PTWs, typically visualised through the Busse balloon, and parameter changes typically lead to a cascade of wavelength changes through the Busse balloon. In the past, the stability boundaries of the Busse balloon have been used to predict such wavelength changes. Here, motivated by anecdotal evidence from previous work, we provide compelling evidence that the Busse balloon provides insufficient information to predict wavelength changes due to a delayed loss of stability phenomenon. Using two different reaction–advection–diffusion systems, we relate the delay that occurs between the crossing of a stability boundary in the Busse balloon and the occurrence of a wavelength change to features of the essential spectrum of the destabilised PTW. This leads to a predictive framework that can estimate the order of magnitude of such a time delay, which provides a novel “early warning sign” for pattern destabilisation. We illustrate the implementation of the predictive framework to predict under what conditions a wavelength change of a PTW occurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信