Christina O'Toole, Philip White, Conor T Graham, Caitlin Conroy, Deirdre Brophy
{"title":"鱼鳞中的皮质醇在长期储存期间保持稳定。","authors":"Christina O'Toole, Philip White, Conor T Graham, Caitlin Conroy, Deirdre Brophy","doi":"10.1093/conphys/coae065","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement of cortisol in fish scales is attracting considerable attention as a non-invasive indicator of chronic stress in wild populations. For many fish species of management and conservation interest, extensive scale collections exist that could provide extended records of individual stress responses, by combining cortisol measurements with life history information. However, it is not yet known how well cortisol is preserved in the scale during storage. To investigate the stability of scale cortisol, we accelerated potential degradation by storing scales from an individual farmed Atlantic salmon (<i>Salmo salar</i>) in an oven at 50°C for between 2 and 12 weeks. We found no significant relationship between scale cortisol concentration and either storage time or storage temperature. Cortisol concentrations in scales from the same fish were consistent (18.54-21.82 ng. g<sup>-1</sup>; coefficient of variation (CV) = 3.6%), indicating that scale cortisol can be reliably quantified, even in scales stored for varying periods of time or under different conditions. We also examined the effects of storage in real time using Atlantic salmon scales that were stored in paper envelopes at room temperature for between 3 and 32 years and found no significant relationship between scale cortisol concentration and storage time. Scale cortisol concentrations ranged from 4.05 to 135.37 ng.g<sup>-1</sup> and levels of between-individual variability were high (CV = 61%). Given that scale cortisol does not degrade during long-term storage, historical scale collections and associated data describing fish life histories could potentially be used to develop bioindicators of physiological responses in fish populations. Further research is needed to understand scale cortisol variability and its biological relevance.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae065"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413646/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cortisol in fish scales remains stable during extended periods of storage.\",\"authors\":\"Christina O'Toole, Philip White, Conor T Graham, Caitlin Conroy, Deirdre Brophy\",\"doi\":\"10.1093/conphys/coae065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measurement of cortisol in fish scales is attracting considerable attention as a non-invasive indicator of chronic stress in wild populations. For many fish species of management and conservation interest, extensive scale collections exist that could provide extended records of individual stress responses, by combining cortisol measurements with life history information. However, it is not yet known how well cortisol is preserved in the scale during storage. To investigate the stability of scale cortisol, we accelerated potential degradation by storing scales from an individual farmed Atlantic salmon (<i>Salmo salar</i>) in an oven at 50°C for between 2 and 12 weeks. We found no significant relationship between scale cortisol concentration and either storage time or storage temperature. Cortisol concentrations in scales from the same fish were consistent (18.54-21.82 ng. g<sup>-1</sup>; coefficient of variation (CV) = 3.6%), indicating that scale cortisol can be reliably quantified, even in scales stored for varying periods of time or under different conditions. We also examined the effects of storage in real time using Atlantic salmon scales that were stored in paper envelopes at room temperature for between 3 and 32 years and found no significant relationship between scale cortisol concentration and storage time. Scale cortisol concentrations ranged from 4.05 to 135.37 ng.g<sup>-1</sup> and levels of between-individual variability were high (CV = 61%). Given that scale cortisol does not degrade during long-term storage, historical scale collections and associated data describing fish life histories could potentially be used to develop bioindicators of physiological responses in fish populations. Further research is needed to understand scale cortisol variability and its biological relevance.</p>\",\"PeriodicalId\":54331,\"journal\":{\"name\":\"Conservation Physiology\",\"volume\":\"12 1\",\"pages\":\"coae065\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413646/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Physiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/conphys/coae065\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae065","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Cortisol in fish scales remains stable during extended periods of storage.
Measurement of cortisol in fish scales is attracting considerable attention as a non-invasive indicator of chronic stress in wild populations. For many fish species of management and conservation interest, extensive scale collections exist that could provide extended records of individual stress responses, by combining cortisol measurements with life history information. However, it is not yet known how well cortisol is preserved in the scale during storage. To investigate the stability of scale cortisol, we accelerated potential degradation by storing scales from an individual farmed Atlantic salmon (Salmo salar) in an oven at 50°C for between 2 and 12 weeks. We found no significant relationship between scale cortisol concentration and either storage time or storage temperature. Cortisol concentrations in scales from the same fish were consistent (18.54-21.82 ng. g-1; coefficient of variation (CV) = 3.6%), indicating that scale cortisol can be reliably quantified, even in scales stored for varying periods of time or under different conditions. We also examined the effects of storage in real time using Atlantic salmon scales that were stored in paper envelopes at room temperature for between 3 and 32 years and found no significant relationship between scale cortisol concentration and storage time. Scale cortisol concentrations ranged from 4.05 to 135.37 ng.g-1 and levels of between-individual variability were high (CV = 61%). Given that scale cortisol does not degrade during long-term storage, historical scale collections and associated data describing fish life histories could potentially be used to develop bioindicators of physiological responses in fish populations. Further research is needed to understand scale cortisol variability and its biological relevance.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.