气泡柱中的弹性带:当弹性、毛细管和重力作用于平衡构型时。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Jean Farago, Manon Jouanlanne, Antoine Egelé, Aurélie Hourlier-Fargette
{"title":"气泡柱中的弹性带:当弹性、毛细管和重力作用于平衡构型时。","authors":"Jean Farago, Manon Jouanlanne, Antoine Egelé, Aurélie Hourlier-Fargette","doi":"10.1103/PhysRevE.110.024803","DOIUrl":null,"url":null,"abstract":"<p><p>Taking advantage of the competition between elasticity and capillarity has proven to be an efficient way to design structures by folding, bending, or assembling elastic objects in contact with liquid interfaces. Elastocapillary effects often occur at scales where gravity does not play an important role, such as in microfabrication processes. However, the influence of gravity can become significant at the desktop scale, which is relevant for numerous situations including model experiments used to provide a fundamental physics understanding, working at easily accessible scales. We focus here on the case of elastic ribbons placed in two-dimensional bubble columns: by introducing an elastic ribbon inside the central soap films of a staircase bubble structure in a square cross-section column, the deviation from Plateau's laws (capillarity-dominated case dictating the shape of usual foams) can be quantified as a function of the rigidity of the ribbon. For long ribbons, gravity cannot be neglected. We provide a detailed theoretical analysis of the ribbon profile, taking into account capillarity, elasticity, and gravity. We compute the total energy of the system and perform energy minimization under constraints, using Lagrangian mechanics. The model is then validated via a comparison with experiments with three different ribbon thicknesses.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic ribbons in bubble columns: When elasticity, capillarity, and gravity govern equilibrium configurations.\",\"authors\":\"Jean Farago, Manon Jouanlanne, Antoine Egelé, Aurélie Hourlier-Fargette\",\"doi\":\"10.1103/PhysRevE.110.024803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Taking advantage of the competition between elasticity and capillarity has proven to be an efficient way to design structures by folding, bending, or assembling elastic objects in contact with liquid interfaces. Elastocapillary effects often occur at scales where gravity does not play an important role, such as in microfabrication processes. However, the influence of gravity can become significant at the desktop scale, which is relevant for numerous situations including model experiments used to provide a fundamental physics understanding, working at easily accessible scales. We focus here on the case of elastic ribbons placed in two-dimensional bubble columns: by introducing an elastic ribbon inside the central soap films of a staircase bubble structure in a square cross-section column, the deviation from Plateau's laws (capillarity-dominated case dictating the shape of usual foams) can be quantified as a function of the rigidity of the ribbon. For long ribbons, gravity cannot be neglected. We provide a detailed theoretical analysis of the ribbon profile, taking into account capillarity, elasticity, and gravity. We compute the total energy of the system and perform energy minimization under constraints, using Lagrangian mechanics. The model is then validated via a comparison with experiments with three different ribbon thicknesses.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.024803\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.024803","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,利用弹性和毛细管之间的竞争优势,通过折叠、弯曲或组装与液体界面接触的弹性物体来设计结构是一种有效的方法。弹性毛细管效应通常发生在重力不起重要作用的尺度上,例如在微加工过程中。然而,在桌面尺度上,重力的影响可能会变得显著,这与许多情况有关,包括用于提供基础物理学理解的模型实验,以及在容易获得的尺度上工作。在此,我们将重点放在二维气泡柱中放置弹性带的情况上:通过在方形截面柱中的阶梯气泡结构的中央皂膜内引入弹性带,可以将普拉托定律(以毛细管为主,决定通常泡沫的形状)的偏差量化为弹性带刚度的函数。对于长带,重力是不可忽视的。考虑到毛细作用、弹性和重力,我们对带状轮廓进行了详细的理论分析。我们利用拉格朗日力学计算了系统的总能量,并在约束条件下实现了能量最小化。然后,通过与三种不同厚度色带的实验进行比较,对模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic ribbons in bubble columns: When elasticity, capillarity, and gravity govern equilibrium configurations.

Taking advantage of the competition between elasticity and capillarity has proven to be an efficient way to design structures by folding, bending, or assembling elastic objects in contact with liquid interfaces. Elastocapillary effects often occur at scales where gravity does not play an important role, such as in microfabrication processes. However, the influence of gravity can become significant at the desktop scale, which is relevant for numerous situations including model experiments used to provide a fundamental physics understanding, working at easily accessible scales. We focus here on the case of elastic ribbons placed in two-dimensional bubble columns: by introducing an elastic ribbon inside the central soap films of a staircase bubble structure in a square cross-section column, the deviation from Plateau's laws (capillarity-dominated case dictating the shape of usual foams) can be quantified as a function of the rigidity of the ribbon. For long ribbons, gravity cannot be neglected. We provide a detailed theoretical analysis of the ribbon profile, taking into account capillarity, elasticity, and gravity. We compute the total energy of the system and perform energy minimization under constraints, using Lagrangian mechanics. The model is then validated via a comparison with experiments with three different ribbon thicknesses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信