{"title":"MicroRNA-630:糖尿病肾病炎症的潜在守护者","authors":"Ashraf Al Madhoun","doi":"10.4239/wjd.v15.i9.1837","DOIUrl":null,"url":null,"abstract":"<p><p>In this editorial, we comment on the article by Wu <i>et al</i> published \"MicroRNA-630 alleviates inflammatory reactions in rats with diabetic kidney disease by targeting toll-like receptor 4\". Diabetic kidney disease (DKD) stands as a significant complication occurring from diabetes mellitus, which contributes substantially to the morbidity and mortality rates worldwide. Renal tubular epithelial cell da-mage, often accompanied by inflammatory responses and mesenchymal trans-differentiation, plays a pivotal role in the progression of DKD. Despite extensive research, the intricate molecular mechanisms underlying these processes remain to be determined. Wu <i>et al</i> remarkable work identifies microRNA-630 (miR-630) as an emerging potential regulator of cell migration, apoptosis, and autophagy, prompting investigation into its association with DKD pathogenesis. This study endeavors to elucidate the impact of miR-630 on TEC injury and the inflammatory response in DKD rats. The role of miR-630 in human DKD will be of interest for future studies.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"15 9","pages":"1837-1841"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372643/pdf/","citationCount":"0","resultStr":"{\"title\":\"MicroRNA-630: A potential guardian against inflammation in diabetic kidney disease.\",\"authors\":\"Ashraf Al Madhoun\",\"doi\":\"10.4239/wjd.v15.i9.1837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this editorial, we comment on the article by Wu <i>et al</i> published \\\"MicroRNA-630 alleviates inflammatory reactions in rats with diabetic kidney disease by targeting toll-like receptor 4\\\". Diabetic kidney disease (DKD) stands as a significant complication occurring from diabetes mellitus, which contributes substantially to the morbidity and mortality rates worldwide. Renal tubular epithelial cell da-mage, often accompanied by inflammatory responses and mesenchymal trans-differentiation, plays a pivotal role in the progression of DKD. Despite extensive research, the intricate molecular mechanisms underlying these processes remain to be determined. Wu <i>et al</i> remarkable work identifies microRNA-630 (miR-630) as an emerging potential regulator of cell migration, apoptosis, and autophagy, prompting investigation into its association with DKD pathogenesis. This study endeavors to elucidate the impact of miR-630 on TEC injury and the inflammatory response in DKD rats. The role of miR-630 in human DKD will be of interest for future studies.</p>\",\"PeriodicalId\":48607,\"journal\":{\"name\":\"World Journal of Diabetes\",\"volume\":\"15 9\",\"pages\":\"1837-1841\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4239/wjd.v15.i9.1837\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v15.i9.1837","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
MicroRNA-630: A potential guardian against inflammation in diabetic kidney disease.
In this editorial, we comment on the article by Wu et al published "MicroRNA-630 alleviates inflammatory reactions in rats with diabetic kidney disease by targeting toll-like receptor 4". Diabetic kidney disease (DKD) stands as a significant complication occurring from diabetes mellitus, which contributes substantially to the morbidity and mortality rates worldwide. Renal tubular epithelial cell da-mage, often accompanied by inflammatory responses and mesenchymal trans-differentiation, plays a pivotal role in the progression of DKD. Despite extensive research, the intricate molecular mechanisms underlying these processes remain to be determined. Wu et al remarkable work identifies microRNA-630 (miR-630) as an emerging potential regulator of cell migration, apoptosis, and autophagy, prompting investigation into its association with DKD pathogenesis. This study endeavors to elucidate the impact of miR-630 on TEC injury and the inflammatory response in DKD rats. The role of miR-630 in human DKD will be of interest for future studies.
期刊介绍:
The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.