{"title":"挖掘 Thinopyrum 和 Agropyron 属的遗传潜力,保护小麦免受疾病和环境胁迫。","authors":"L Ya Plotnikova, V V Knaub","doi":"10.18699/vjgb-24-60","DOIUrl":null,"url":null,"abstract":"<p><p>Common wheat is one of the most important food crops in the world. Grain harvests can be increased by reducing losses from diseases and environmental stresses. The tertiary gene pool, including Thinopyrum spp., is a valuable resource for increasing genetic diversity and wheat resistance to fungal diseases and abiotic stresses. Distant hybridization between wheat and Thinopyrum spp. began in the 1920s in Russia, and later continued in different countries. The main results were obtained using the species Th. ponticum and Th. intermedium. Additionally, introgression material was created based on Th. elongatum, Th. bessarabicum, Th. junceiforme, Agropyron cristatum. The results of introgression for resistance to diseases (leaf, stem, and stripe rusts; powdery mildew; Fusarium head blight; and Septoria blotch) and abiotic stresses (drought, extreme temperatures, and salinity) to wheat was reviewed. Approaches to improving the agronomic properties of introgression breeding material (the use of irradiation, ph-mutants and compensating Robertsonian translocations) were described. The experience of long-term use in the world of a number of genes from the tertiary gene pool in protecting wheat from leaf and stem rust was observed. Th. ponticum is a nonhost for Puccinia triticina (Ptr) and P. graminis f. sp. tritici (Pgt) and suppresses the development of rust fungi on the plant surface. Wheat samples with the tall wheatgrass genes Lr19, Lr38, Sr24, Sr25 and Sr26 showed defence mechanisms similar to nonhosts resistance. Their influence led to disruption of the development of surface infection structures and fungal death when trying to penetrate the stomata (prehaustorial resistance or stomatal immunity). Obviously, a change in the chemical properties of fungal surface structures of races virulent to Lr19, Lr24, Sr24, Sr25, and Sr26 leads to a decrease in their adaptability to the environment. This possibly determined the durable resistance of cultivars to leaf and stem rusts in different regions. Alien genes with a similar effect are of interest for breeding cultivars with durable resistance to rust diseases and engineering crops with the help of molecular technologies.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393651/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploitation of the genetic potential of Thinopyrum and Agropyron genera to protect wheat from diseases and environmental stresses.\",\"authors\":\"L Ya Plotnikova, V V Knaub\",\"doi\":\"10.18699/vjgb-24-60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Common wheat is one of the most important food crops in the world. Grain harvests can be increased by reducing losses from diseases and environmental stresses. The tertiary gene pool, including Thinopyrum spp., is a valuable resource for increasing genetic diversity and wheat resistance to fungal diseases and abiotic stresses. Distant hybridization between wheat and Thinopyrum spp. began in the 1920s in Russia, and later continued in different countries. The main results were obtained using the species Th. ponticum and Th. intermedium. Additionally, introgression material was created based on Th. elongatum, Th. bessarabicum, Th. junceiforme, Agropyron cristatum. The results of introgression for resistance to diseases (leaf, stem, and stripe rusts; powdery mildew; Fusarium head blight; and Septoria blotch) and abiotic stresses (drought, extreme temperatures, and salinity) to wheat was reviewed. Approaches to improving the agronomic properties of introgression breeding material (the use of irradiation, ph-mutants and compensating Robertsonian translocations) were described. The experience of long-term use in the world of a number of genes from the tertiary gene pool in protecting wheat from leaf and stem rust was observed. Th. ponticum is a nonhost for Puccinia triticina (Ptr) and P. graminis f. sp. tritici (Pgt) and suppresses the development of rust fungi on the plant surface. Wheat samples with the tall wheatgrass genes Lr19, Lr38, Sr24, Sr25 and Sr26 showed defence mechanisms similar to nonhosts resistance. Their influence led to disruption of the development of surface infection structures and fungal death when trying to penetrate the stomata (prehaustorial resistance or stomatal immunity). Obviously, a change in the chemical properties of fungal surface structures of races virulent to Lr19, Lr24, Sr24, Sr25, and Sr26 leads to a decrease in their adaptability to the environment. This possibly determined the durable resistance of cultivars to leaf and stem rusts in different regions. Alien genes with a similar effect are of interest for breeding cultivars with durable resistance to rust diseases and engineering crops with the help of molecular technologies.</p>\",\"PeriodicalId\":44339,\"journal\":{\"name\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393651/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18699/vjgb-24-60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/vjgb-24-60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploitation of the genetic potential of Thinopyrum and Agropyron genera to protect wheat from diseases and environmental stresses.
Common wheat is one of the most important food crops in the world. Grain harvests can be increased by reducing losses from diseases and environmental stresses. The tertiary gene pool, including Thinopyrum spp., is a valuable resource for increasing genetic diversity and wheat resistance to fungal diseases and abiotic stresses. Distant hybridization between wheat and Thinopyrum spp. began in the 1920s in Russia, and later continued in different countries. The main results were obtained using the species Th. ponticum and Th. intermedium. Additionally, introgression material was created based on Th. elongatum, Th. bessarabicum, Th. junceiforme, Agropyron cristatum. The results of introgression for resistance to diseases (leaf, stem, and stripe rusts; powdery mildew; Fusarium head blight; and Septoria blotch) and abiotic stresses (drought, extreme temperatures, and salinity) to wheat was reviewed. Approaches to improving the agronomic properties of introgression breeding material (the use of irradiation, ph-mutants and compensating Robertsonian translocations) were described. The experience of long-term use in the world of a number of genes from the tertiary gene pool in protecting wheat from leaf and stem rust was observed. Th. ponticum is a nonhost for Puccinia triticina (Ptr) and P. graminis f. sp. tritici (Pgt) and suppresses the development of rust fungi on the plant surface. Wheat samples with the tall wheatgrass genes Lr19, Lr38, Sr24, Sr25 and Sr26 showed defence mechanisms similar to nonhosts resistance. Their influence led to disruption of the development of surface infection structures and fungal death when trying to penetrate the stomata (prehaustorial resistance or stomatal immunity). Obviously, a change in the chemical properties of fungal surface structures of races virulent to Lr19, Lr24, Sr24, Sr25, and Sr26 leads to a decrease in their adaptability to the environment. This possibly determined the durable resistance of cultivars to leaf and stem rusts in different regions. Alien genes with a similar effect are of interest for breeding cultivars with durable resistance to rust diseases and engineering crops with the help of molecular technologies.
期刊介绍:
The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.