Jaime Govea, Rommel Gutierrez, William Villegas-Ch
{"title":"人工智能时代的透明度和精确度:可解释性增强推荐系统的评估。","authors":"Jaime Govea, Rommel Gutierrez, William Villegas-Ch","doi":"10.3389/frai.2024.1410790","DOIUrl":null,"url":null,"abstract":"<p><p>In today's information age, recommender systems have become an essential tool to filter and personalize the massive data flow to users. However, these systems' increasing complexity and opaque nature have raised concerns about transparency and user trust. Lack of explainability in recommendations can lead to ill-informed decisions and decreased confidence in these advanced systems. Our study addresses this problem by integrating explainability techniques into recommendation systems to improve both the precision of the recommendations and their transparency. We implemented and evaluated recommendation models on the MovieLens and Amazon datasets, applying explainability methods like LIME and SHAP to disentangle the model decisions. The results indicated significant improvements in the precision of the recommendations, with a notable increase in the user's ability to understand and trust the suggestions provided by the system. For example, we saw a 3% increase in recommendation precision when incorporating these explainability techniques, demonstrating their added value in performance and improving the user experience.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1410790"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transparency and precision in the age of AI: evaluation of explainability-enhanced recommendation systems.\",\"authors\":\"Jaime Govea, Rommel Gutierrez, William Villegas-Ch\",\"doi\":\"10.3389/frai.2024.1410790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In today's information age, recommender systems have become an essential tool to filter and personalize the massive data flow to users. However, these systems' increasing complexity and opaque nature have raised concerns about transparency and user trust. Lack of explainability in recommendations can lead to ill-informed decisions and decreased confidence in these advanced systems. Our study addresses this problem by integrating explainability techniques into recommendation systems to improve both the precision of the recommendations and their transparency. We implemented and evaluated recommendation models on the MovieLens and Amazon datasets, applying explainability methods like LIME and SHAP to disentangle the model decisions. The results indicated significant improvements in the precision of the recommendations, with a notable increase in the user's ability to understand and trust the suggestions provided by the system. For example, we saw a 3% increase in recommendation precision when incorporating these explainability techniques, demonstrating their added value in performance and improving the user experience.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1410790\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1410790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1410790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Transparency and precision in the age of AI: evaluation of explainability-enhanced recommendation systems.
In today's information age, recommender systems have become an essential tool to filter and personalize the massive data flow to users. However, these systems' increasing complexity and opaque nature have raised concerns about transparency and user trust. Lack of explainability in recommendations can lead to ill-informed decisions and decreased confidence in these advanced systems. Our study addresses this problem by integrating explainability techniques into recommendation systems to improve both the precision of the recommendations and their transparency. We implemented and evaluated recommendation models on the MovieLens and Amazon datasets, applying explainability methods like LIME and SHAP to disentangle the model decisions. The results indicated significant improvements in the precision of the recommendations, with a notable increase in the user's ability to understand and trust the suggestions provided by the system. For example, we saw a 3% increase in recommendation precision when incorporating these explainability techniques, demonstrating their added value in performance and improving the user experience.