{"title":"在液体配方中使用可持续聚合物的使命导向型创新。","authors":"Anju Massey-Brooker, Rowan Conway","doi":"10.1098/rsta.2023.0272","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial chemical producers and formulators are increasingly conscious of their responsibility in stewarding planetary resources and minimizing harm to the environment. In 2019, the Royal Society of Chemistry (RSC) engaged an industry task force from across the value chain to drive technical research to classify a new class of polymer-polymers in liquid formulation (PLFs). Building on this, the task force called for step change in sustainability practices for PLFs and instigated a design and development process to identify research themes and priorities that could accelerate innovation in this area. However, a key challenge was that as a novel classification, PLFs were largely unknown outside the chemistry community and entirely absent from the mainstream research agenda. To establish the demand-pull requirements of the value chain for sustainable PLFs, the RSC used a 'mission-oriented' innovation framework to enable the taskforce to co-design an ideal-type portfolio of research and innovation projects, and to set out a realistic roadmap for transition. This perspective article presents a summary of the activities carried out by the task force in its pursuit of mission-oriented innovation for PLFs and describes the strategic design method used to enable cross-value chain consensus on action for PLF sustainability, build system-wide innovation ecosystems and explore common-good scenarios. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2282","pages":"20230272"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mission-oriented innovation for sustainable polymers in liquid formulation.\",\"authors\":\"Anju Massey-Brooker, Rowan Conway\",\"doi\":\"10.1098/rsta.2023.0272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Industrial chemical producers and formulators are increasingly conscious of their responsibility in stewarding planetary resources and minimizing harm to the environment. In 2019, the Royal Society of Chemistry (RSC) engaged an industry task force from across the value chain to drive technical research to classify a new class of polymer-polymers in liquid formulation (PLFs). Building on this, the task force called for step change in sustainability practices for PLFs and instigated a design and development process to identify research themes and priorities that could accelerate innovation in this area. However, a key challenge was that as a novel classification, PLFs were largely unknown outside the chemistry community and entirely absent from the mainstream research agenda. To establish the demand-pull requirements of the value chain for sustainable PLFs, the RSC used a 'mission-oriented' innovation framework to enable the taskforce to co-design an ideal-type portfolio of research and innovation projects, and to set out a realistic roadmap for transition. This perspective article presents a summary of the activities carried out by the task force in its pursuit of mission-oriented innovation for PLFs and describes the strategic design method used to enable cross-value chain consensus on action for PLF sustainability, build system-wide innovation ecosystems and explore common-good scenarios. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2282\",\"pages\":\"20230272\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0272\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0272","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mission-oriented innovation for sustainable polymers in liquid formulation.
Industrial chemical producers and formulators are increasingly conscious of their responsibility in stewarding planetary resources and minimizing harm to the environment. In 2019, the Royal Society of Chemistry (RSC) engaged an industry task force from across the value chain to drive technical research to classify a new class of polymer-polymers in liquid formulation (PLFs). Building on this, the task force called for step change in sustainability practices for PLFs and instigated a design and development process to identify research themes and priorities that could accelerate innovation in this area. However, a key challenge was that as a novel classification, PLFs were largely unknown outside the chemistry community and entirely absent from the mainstream research agenda. To establish the demand-pull requirements of the value chain for sustainable PLFs, the RSC used a 'mission-oriented' innovation framework to enable the taskforce to co-design an ideal-type portfolio of research and innovation projects, and to set out a realistic roadmap for transition. This perspective article presents a summary of the activities carried out by the task force in its pursuit of mission-oriented innovation for PLFs and describes the strategic design method used to enable cross-value chain consensus on action for PLF sustainability, build system-wide innovation ecosystems and explore common-good scenarios. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.