{"title":"绿色碳和未来的化学工业。","authors":"Roger A Sheldon","doi":"10.1098/rsta.2023.0259","DOIUrl":null,"url":null,"abstract":"<p><p>The pressing need to mitigate climate change and drastically reduce environmental pollution and loss of biodiversity has precipitated a so-called energy transition aimed at the decarbonization of energy and defossilization of the chemical industry. The goal is a carbon-neutral (net-zero) society driven by sustainable energy and a circular bio-based economy relying on renewable biomass as the raw material. It will involve the use of green carbon, defined as carbon derived from terrestrial or aquatic biomass or organic waste, including carbon dioxide and methane emissions. It will also necessitate the accompanying use of green hydrogen that is generated by electrolysis of water using a sustainable source of energy, e.g. solar, wind or nuclear. Ninety per cent of the industrial chemicals produced in oil refineries are industrial monomers that constitute the precursors of a large variety of polymers, many of which are plastics. Primary examples of the latter are polyolefins such as polyethylene, polypropylene, polyvinyl chloride and polystyrene. Polyolefins are extremely difficult to recycle back to the olefin monomers and discarded polyolefin plastics generally end up as the plastic waste that is responsible for the degradation of our natural habitat. By contrast, waste biomass, such as the lignocellulose contained in forestry residues and agricultural waste, constitutes a renewable feedstock for the sustainable production of industrial monomers and the corresponding polymers. The latter could be the same polyolefins that are currently produced in oil refineries but a more attractive long-term alternative is to produce polyesters and polyamides that can be recycled back to the original monomers: a paradigm shift to a truly bio-based circular economy on the road to a net-zero chemical industry. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2282","pages":"20230259"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green carbon and the chemical industry of the future.\",\"authors\":\"Roger A Sheldon\",\"doi\":\"10.1098/rsta.2023.0259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pressing need to mitigate climate change and drastically reduce environmental pollution and loss of biodiversity has precipitated a so-called energy transition aimed at the decarbonization of energy and defossilization of the chemical industry. The goal is a carbon-neutral (net-zero) society driven by sustainable energy and a circular bio-based economy relying on renewable biomass as the raw material. It will involve the use of green carbon, defined as carbon derived from terrestrial or aquatic biomass or organic waste, including carbon dioxide and methane emissions. It will also necessitate the accompanying use of green hydrogen that is generated by electrolysis of water using a sustainable source of energy, e.g. solar, wind or nuclear. Ninety per cent of the industrial chemicals produced in oil refineries are industrial monomers that constitute the precursors of a large variety of polymers, many of which are plastics. Primary examples of the latter are polyolefins such as polyethylene, polypropylene, polyvinyl chloride and polystyrene. Polyolefins are extremely difficult to recycle back to the olefin monomers and discarded polyolefin plastics generally end up as the plastic waste that is responsible for the degradation of our natural habitat. By contrast, waste biomass, such as the lignocellulose contained in forestry residues and agricultural waste, constitutes a renewable feedstock for the sustainable production of industrial monomers and the corresponding polymers. The latter could be the same polyolefins that are currently produced in oil refineries but a more attractive long-term alternative is to produce polyesters and polyamides that can be recycled back to the original monomers: a paradigm shift to a truly bio-based circular economy on the road to a net-zero chemical industry. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2282\",\"pages\":\"20230259\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0259\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0259","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Green carbon and the chemical industry of the future.
The pressing need to mitigate climate change and drastically reduce environmental pollution and loss of biodiversity has precipitated a so-called energy transition aimed at the decarbonization of energy and defossilization of the chemical industry. The goal is a carbon-neutral (net-zero) society driven by sustainable energy and a circular bio-based economy relying on renewable biomass as the raw material. It will involve the use of green carbon, defined as carbon derived from terrestrial or aquatic biomass or organic waste, including carbon dioxide and methane emissions. It will also necessitate the accompanying use of green hydrogen that is generated by electrolysis of water using a sustainable source of energy, e.g. solar, wind or nuclear. Ninety per cent of the industrial chemicals produced in oil refineries are industrial monomers that constitute the precursors of a large variety of polymers, many of which are plastics. Primary examples of the latter are polyolefins such as polyethylene, polypropylene, polyvinyl chloride and polystyrene. Polyolefins are extremely difficult to recycle back to the olefin monomers and discarded polyolefin plastics generally end up as the plastic waste that is responsible for the degradation of our natural habitat. By contrast, waste biomass, such as the lignocellulose contained in forestry residues and agricultural waste, constitutes a renewable feedstock for the sustainable production of industrial monomers and the corresponding polymers. The latter could be the same polyolefins that are currently produced in oil refineries but a more attractive long-term alternative is to produce polyesters and polyamides that can be recycled back to the original monomers: a paradigm shift to a truly bio-based circular economy on the road to a net-zero chemical industry. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.