{"title":"促进资源效率和循环经济的异质催化技术。","authors":"Sonja D Mürtz, Regina Palkovits","doi":"10.1098/rsta.2023.0264","DOIUrl":null,"url":null,"abstract":"<p><p>Our industry today is predominantly based on linear value chains. Raw materials are extracted from primary sources, processed into products, used, and disposed of at the end of their life cycle. This linear economy causes a wide range of negative environmental impacts owing to the resulting greenhouse gas emissions and pollution of marine and terrestrial ecosystems. Closed carbon cycles and climate-neutral energy production are essential for the production not only of fuels but also of all chemicals, including plastics and fertilizers, to counteract climate change and further damage to the environment. In this regard, this article discusses the importance of heterogeneous catalysts for selected technologies associated with this transformation of the resource base and energy supply. It discusses the technological framework conditions of a net CO<sub>2</sub>-neutral industry, with a focus on electrocatalytic water-splitting for hydrogen production, as well as the catalytic challenges of production of chemicals for the whole value chain using biomass, CO<sub>2</sub> and plastic waste as raw materials. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2282","pages":"20230264"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contributions of heterogeneous catalysis enabling resource efficiency and circular economy.\",\"authors\":\"Sonja D Mürtz, Regina Palkovits\",\"doi\":\"10.1098/rsta.2023.0264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our industry today is predominantly based on linear value chains. Raw materials are extracted from primary sources, processed into products, used, and disposed of at the end of their life cycle. This linear economy causes a wide range of negative environmental impacts owing to the resulting greenhouse gas emissions and pollution of marine and terrestrial ecosystems. Closed carbon cycles and climate-neutral energy production are essential for the production not only of fuels but also of all chemicals, including plastics and fertilizers, to counteract climate change and further damage to the environment. In this regard, this article discusses the importance of heterogeneous catalysts for selected technologies associated with this transformation of the resource base and energy supply. It discusses the technological framework conditions of a net CO<sub>2</sub>-neutral industry, with a focus on electrocatalytic water-splitting for hydrogen production, as well as the catalytic challenges of production of chemicals for the whole value chain using biomass, CO<sub>2</sub> and plastic waste as raw materials. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2282\",\"pages\":\"20230264\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0264\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0264","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Contributions of heterogeneous catalysis enabling resource efficiency and circular economy.
Our industry today is predominantly based on linear value chains. Raw materials are extracted from primary sources, processed into products, used, and disposed of at the end of their life cycle. This linear economy causes a wide range of negative environmental impacts owing to the resulting greenhouse gas emissions and pollution of marine and terrestrial ecosystems. Closed carbon cycles and climate-neutral energy production are essential for the production not only of fuels but also of all chemicals, including plastics and fertilizers, to counteract climate change and further damage to the environment. In this regard, this article discusses the importance of heterogeneous catalysts for selected technologies associated with this transformation of the resource base and energy supply. It discusses the technological framework conditions of a net CO2-neutral industry, with a focus on electrocatalytic water-splitting for hydrogen production, as well as the catalytic challenges of production of chemicals for the whole value chain using biomass, CO2 and plastic waste as raw materials. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.