人工智能在加强肿瘤内免疫疗法护理方面的新兴作用。

Q2 Medicine
Abin Sajan, Abdallah Lamane, Asad Baig, Korentin Le Floch, Laurent Dercle
{"title":"人工智能在加强肿瘤内免疫疗法护理方面的新兴作用。","authors":"Abin Sajan, Abdallah Lamane, Asad Baig, Korentin Le Floch, Laurent Dercle","doi":"10.18632/oncotarget.28643","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of immunotherapy (IO), and more recently intratumoral IO presents a novel approach to cancer treatment which can enhance immune responses while allowing combination therapy and reducing systemic adverse events. These techniques are intended to change the therapeutic paradigm of oncology care, and means that traditional assessment methods are inadequate, underlining the importance of adopting innovative approaches. Artificial intelligence (AI) with machine learning algorithms and radiomics are promising approaches, offering new insights into patient care by analyzing complex imaging data to identify biomarkers to refine diagnosis, guide interventions, predict treatment responses, and adapt therapeutic strategies. In this editorial, we explore how integrating these technologies could revolutionize personalized oncology. We discuss their potential to enhance the survival and quality of life of patients treated with intratumoral IO by improving treatment effectiveness and minimizing side effects, potentially reshaping practice guidelines. We also identify areas for future research and review clinical trials to confirm the efficacy of these promising approaches.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"635-637"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407757/pdf/","citationCount":"0","resultStr":"{\"title\":\"The emerging role of AI in enhancing intratumoral immunotherapy care.\",\"authors\":\"Abin Sajan, Abdallah Lamane, Asad Baig, Korentin Le Floch, Laurent Dercle\",\"doi\":\"10.18632/oncotarget.28643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of immunotherapy (IO), and more recently intratumoral IO presents a novel approach to cancer treatment which can enhance immune responses while allowing combination therapy and reducing systemic adverse events. These techniques are intended to change the therapeutic paradigm of oncology care, and means that traditional assessment methods are inadequate, underlining the importance of adopting innovative approaches. Artificial intelligence (AI) with machine learning algorithms and radiomics are promising approaches, offering new insights into patient care by analyzing complex imaging data to identify biomarkers to refine diagnosis, guide interventions, predict treatment responses, and adapt therapeutic strategies. In this editorial, we explore how integrating these technologies could revolutionize personalized oncology. We discuss their potential to enhance the survival and quality of life of patients treated with intratumoral IO by improving treatment effectiveness and minimizing side effects, potentially reshaping practice guidelines. We also identify areas for future research and review clinical trials to confirm the efficacy of these promising approaches.</p>\",\"PeriodicalId\":19499,\"journal\":{\"name\":\"Oncotarget\",\"volume\":\"15 \",\"pages\":\"635-637\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncotarget\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncotarget.28643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

免疫疗法(IO)以及最近出现的肿瘤内免疫疗法为癌症治疗提供了一种新方法,它可以增强免疫反应,同时允许联合治疗并减少全身不良反应。这些技术旨在改变肿瘤护理的治疗模式,这意味着传统的评估方法是不够的,突出了采用创新方法的重要性。人工智能(AI)与机器学习算法和放射组学是前景广阔的方法,通过分析复杂的成像数据来确定生物标记物,从而完善诊断、指导干预、预测治疗反应并调整治疗策略,为患者护理提供新的见解。在这篇社论中,我们将探讨如何整合这些技术来彻底改变个性化肿瘤学。我们讨论了这些技术通过提高治疗效果和减少副作用来提高瘤内 IO 治疗患者的生存率和生活质量的潜力,从而有可能重塑实践指南。我们还确定了未来的研究领域,并回顾了临床试验,以确认这些前景广阔的方法的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The emerging role of AI in enhancing intratumoral immunotherapy care.

The emergence of immunotherapy (IO), and more recently intratumoral IO presents a novel approach to cancer treatment which can enhance immune responses while allowing combination therapy and reducing systemic adverse events. These techniques are intended to change the therapeutic paradigm of oncology care, and means that traditional assessment methods are inadequate, underlining the importance of adopting innovative approaches. Artificial intelligence (AI) with machine learning algorithms and radiomics are promising approaches, offering new insights into patient care by analyzing complex imaging data to identify biomarkers to refine diagnosis, guide interventions, predict treatment responses, and adapt therapeutic strategies. In this editorial, we explore how integrating these technologies could revolutionize personalized oncology. We discuss their potential to enhance the survival and quality of life of patients treated with intratumoral IO by improving treatment effectiveness and minimizing side effects, potentially reshaping practice guidelines. We also identify areas for future research and review clinical trials to confirm the efficacy of these promising approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信