Cathepsin B通过PI3K-Akt信号调节阿尔茨海默病中小胶质细胞的迁移和对淀粉样蛋白β的吞噬作用

IF 6.6 1区 医学 Q1 NEUROSCIENCES
Muzhou Jiang, Dan Zhao, Yue Zhou, Wei Kong, Zhen Xie, Yijie Xiong, Yanhui Li, Shuxuan Zhao, Xueshuai Kou, Simeng Zhang, Rui Meng, Yaping Pan, Zhou Wu, Hiroshi Nakanishi, Juan Zhao, Hui Li, Zhenzhen Quan, Li Lin, Hong Qing, Junjun Ni
{"title":"Cathepsin B通过PI3K-Akt信号调节阿尔茨海默病中小胶质细胞的迁移和对淀粉样蛋白β的吞噬作用","authors":"Muzhou Jiang, Dan Zhao, Yue Zhou, Wei Kong, Zhen Xie, Yijie Xiong, Yanhui Li, Shuxuan Zhao, Xueshuai Kou, Simeng Zhang, Rui Meng, Yaping Pan, Zhou Wu, Hiroshi Nakanishi, Juan Zhao, Hui Li, Zhenzhen Quan, Li Lin, Hong Qing, Junjun Ni","doi":"10.1038/s41386-024-01994-0","DOIUrl":null,"url":null,"abstract":"<p><p>The approval of anti-amyloid β (Aβ) monoclonal antibodies (lecanemab) for the treatment of patients with early preclinical stage of Alzheimer's disease (AD) by the Food and Drug Administration, suggests the reliability and importance of brain Aβ clearance for AD therapy. Microglia are the main phagocytes that clear Aβ in the brain, but the underlying regulatory mechanism is unclear. Here, we investigate the critical role of cathepsin B (CatB) in modulating microglial Aβ clearance from mouse brain. Wild-type or CatB<sup>-/-</sup> mice were injected with Aβ into the hippocampus from 1 to 3 weeks. Mice were evaluated for cognitive change, Aβ metabolism, neuroinflammation. Microglia and neuron cultures were prepared to verify the in vivo results. The statistical analyses were performed by student's t test, one-way ANOVA with a post hoc Tukey's test using the GraphPad Prism software package. CatB deficiency significantly reduces Aβ clearance efficiency and aggravates mouse cognitive decline. Exogenous Aβ markedly increases CatB expression in activated microglia. Transcriptome analysis and in vitro cell culture experiments demonstrate that CatB is associated with gene clusters involved in migration, phagocytosis, and inflammation. In addition, transcriptome analysis and immunoblotting suggest that CatB modulates microglial Aβ clearance via PI3K-AKT activation. Our study unveils a previously unknown role of CatB in promoting microglial functionality during Aβ clearance.</p>","PeriodicalId":19143,"journal":{"name":"Neuropsychopharmacology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cathepsin B modulates microglial migration and phagocytosis of amyloid β in Alzheimer's disease through PI3K-Akt signaling.\",\"authors\":\"Muzhou Jiang, Dan Zhao, Yue Zhou, Wei Kong, Zhen Xie, Yijie Xiong, Yanhui Li, Shuxuan Zhao, Xueshuai Kou, Simeng Zhang, Rui Meng, Yaping Pan, Zhou Wu, Hiroshi Nakanishi, Juan Zhao, Hui Li, Zhenzhen Quan, Li Lin, Hong Qing, Junjun Ni\",\"doi\":\"10.1038/s41386-024-01994-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The approval of anti-amyloid β (Aβ) monoclonal antibodies (lecanemab) for the treatment of patients with early preclinical stage of Alzheimer's disease (AD) by the Food and Drug Administration, suggests the reliability and importance of brain Aβ clearance for AD therapy. Microglia are the main phagocytes that clear Aβ in the brain, but the underlying regulatory mechanism is unclear. Here, we investigate the critical role of cathepsin B (CatB) in modulating microglial Aβ clearance from mouse brain. Wild-type or CatB<sup>-/-</sup> mice were injected with Aβ into the hippocampus from 1 to 3 weeks. Mice were evaluated for cognitive change, Aβ metabolism, neuroinflammation. Microglia and neuron cultures were prepared to verify the in vivo results. The statistical analyses were performed by student's t test, one-way ANOVA with a post hoc Tukey's test using the GraphPad Prism software package. CatB deficiency significantly reduces Aβ clearance efficiency and aggravates mouse cognitive decline. Exogenous Aβ markedly increases CatB expression in activated microglia. Transcriptome analysis and in vitro cell culture experiments demonstrate that CatB is associated with gene clusters involved in migration, phagocytosis, and inflammation. In addition, transcriptome analysis and immunoblotting suggest that CatB modulates microglial Aβ clearance via PI3K-AKT activation. Our study unveils a previously unknown role of CatB in promoting microglial functionality during Aβ clearance.</p>\",\"PeriodicalId\":19143,\"journal\":{\"name\":\"Neuropsychopharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41386-024-01994-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41386-024-01994-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

美国食品和药物管理局批准抗淀粉样蛋白β(Aβ)单克隆抗体(lecanemab)用于治疗早期临床前阿尔茨海默病(AD)患者,这表明脑内Aβ清除对于AD治疗的可靠性和重要性。小胶质细胞是清除脑内Aβ的主要吞噬细胞,但其潜在的调控机制尚不清楚。在这里,我们研究了 cathepsin B(CatB)在调节小鼠大脑小胶质细胞 Aβ 清除率中的关键作用。向野生型或 CatB-/- 小鼠海马注射 Aβ 1 至 3 周。对小鼠的认知变化、Aβ代谢和神经炎症进行评估。制备了小胶质细胞和神经元培养物以验证体内结果。统计分析采用GraphPad Prism软件包进行学生t检验、单因素方差分析和事后Tukey检验。CatB缺乏会明显降低Aβ清除效率并加剧小鼠认知能力的衰退。外源 Aβ 能明显增加活化小胶质细胞中 CatB 的表达。转录组分析和体外细胞培养实验表明,CatB 与涉及迁移、吞噬和炎症的基因簇相关。此外,转录组分析和免疫印迹表明,CatB 通过 PI3K-AKT 激活调节小胶质细胞 Aβ 的清除。我们的研究揭示了 CatB 在 Aβ 清除过程中促进小胶质细胞功能的一个未知作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cathepsin B modulates microglial migration and phagocytosis of amyloid β in Alzheimer's disease through PI3K-Akt signaling.

The approval of anti-amyloid β (Aβ) monoclonal antibodies (lecanemab) for the treatment of patients with early preclinical stage of Alzheimer's disease (AD) by the Food and Drug Administration, suggests the reliability and importance of brain Aβ clearance for AD therapy. Microglia are the main phagocytes that clear Aβ in the brain, but the underlying regulatory mechanism is unclear. Here, we investigate the critical role of cathepsin B (CatB) in modulating microglial Aβ clearance from mouse brain. Wild-type or CatB-/- mice were injected with Aβ into the hippocampus from 1 to 3 weeks. Mice were evaluated for cognitive change, Aβ metabolism, neuroinflammation. Microglia and neuron cultures were prepared to verify the in vivo results. The statistical analyses were performed by student's t test, one-way ANOVA with a post hoc Tukey's test using the GraphPad Prism software package. CatB deficiency significantly reduces Aβ clearance efficiency and aggravates mouse cognitive decline. Exogenous Aβ markedly increases CatB expression in activated microglia. Transcriptome analysis and in vitro cell culture experiments demonstrate that CatB is associated with gene clusters involved in migration, phagocytosis, and inflammation. In addition, transcriptome analysis and immunoblotting suggest that CatB modulates microglial Aβ clearance via PI3K-AKT activation. Our study unveils a previously unknown role of CatB in promoting microglial functionality during Aβ clearance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropsychopharmacology
Neuropsychopharmacology 医学-精神病学
CiteScore
15.00
自引率
2.60%
发文量
240
审稿时长
2 months
期刊介绍: Neuropsychopharmacology is a reputable international scientific journal that serves as the official publication of the American College of Neuropsychopharmacology (ACNP). The journal's primary focus is on research that enhances our knowledge of the brain and behavior, with a particular emphasis on the molecular, cellular, physiological, and psychological aspects of substances that affect the central nervous system (CNS). It also aims to identify new molecular targets for the development of future drugs. The journal prioritizes original research reports, but it also welcomes mini-reviews and perspectives, which are often solicited by the editorial office. These types of articles provide valuable insights and syntheses of current research trends and future directions in the field of neuroscience and pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信