Feng Hu, Senbo Yan, Li Lin, Xiaoxia Qiu, Xinghe Lin, Weiwei Wang
{"title":"萨库比特利/缬沙坦通过调节 AMPKα-mTORC1 信号通路,减轻多柔比星诱导的心脏毒性小鼠的心肌炎症、纤维化和细胞凋亡,并促进自噬。","authors":"Feng Hu, Senbo Yan, Li Lin, Xiaoxia Qiu, Xinghe Lin, Weiwei Wang","doi":"10.1007/s11010-024-05117-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the potential cardioprotective effects of sacubitril/valsartan (Sac/Val) in mice with doxorubicin (DOX)-induced cardiomyopathy, a common manifestation of cancer therapy-related cardiac dysfunction (CTRCD) associated with DOX. A total of thirty-two mice were equally classified into 4 groups: control group, DOX (total 24 mg/kg), Sac/Val (80 mg/kg), and Sac/Val + DOX (Sac/Val was given from seven days before doxorubicin administration). Neonatal rat ventricular myocytes was exposed to 5 µM of DOX for 6 h in vitro to mimic the in vivo conditions. A variety of techniques were used to investigate cardiac inflammation, fibrosis, apoptosis, and autophagy, including western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry, and fluorescence. Mice with DOX-induced cardiotoxicity displayed impaired systolic and diastolic function, characterized by elevated levels of cardiac inflammation, fibrosis, cardiomyocyte hypertrophy, apoptosis, and autophagy inhibition in the heart. Treatment with Sac/Val partially reversed these effects. In comparison to the control group, the protein expression of NLRP3, caspase-1, collagen I, Bax, cleaved caspase-3, and P62 were significantly increased, while the protein expression of Bcl-2 and LC3-II were significantly decreased in the myocardial tissues of the Dox-induced cardiomyopathy group. The administration of Sac/Val demonstrated the potential to partially reverse alterations in protein expression within the myocardium of mice with DOX-induced cardiotoxicity by modulating the AMPKα-mTORC1 signaling pathway and suppressing oxidative stress. Additionally, Sac/Val treatment may mitigate Dox-induced apoptosis and inhibition of autophagy in primary cardiomyocytes. Sac/Val seems to be cardioprotective against DOX-induced cardiotoxicity in the pre-treatment mice model. These findings could be attributed to the anti-inflammatory, antioxidant, anti-apoptotic, and de-autophagy effects of Sac/Val through regulation of the AMPKα-mTORC1 signaling pathway.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sacubitril/valsartan attenuated myocardial inflammation, fibrosis, apoptosis and promoted autophagy in doxorubicin-induced cardiotoxicity mice via regulating the AMPKα-mTORC1 signaling pathway.\",\"authors\":\"Feng Hu, Senbo Yan, Li Lin, Xiaoxia Qiu, Xinghe Lin, Weiwei Wang\",\"doi\":\"10.1007/s11010-024-05117-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the potential cardioprotective effects of sacubitril/valsartan (Sac/Val) in mice with doxorubicin (DOX)-induced cardiomyopathy, a common manifestation of cancer therapy-related cardiac dysfunction (CTRCD) associated with DOX. A total of thirty-two mice were equally classified into 4 groups: control group, DOX (total 24 mg/kg), Sac/Val (80 mg/kg), and Sac/Val + DOX (Sac/Val was given from seven days before doxorubicin administration). Neonatal rat ventricular myocytes was exposed to 5 µM of DOX for 6 h in vitro to mimic the in vivo conditions. A variety of techniques were used to investigate cardiac inflammation, fibrosis, apoptosis, and autophagy, including western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry, and fluorescence. Mice with DOX-induced cardiotoxicity displayed impaired systolic and diastolic function, characterized by elevated levels of cardiac inflammation, fibrosis, cardiomyocyte hypertrophy, apoptosis, and autophagy inhibition in the heart. Treatment with Sac/Val partially reversed these effects. In comparison to the control group, the protein expression of NLRP3, caspase-1, collagen I, Bax, cleaved caspase-3, and P62 were significantly increased, while the protein expression of Bcl-2 and LC3-II were significantly decreased in the myocardial tissues of the Dox-induced cardiomyopathy group. The administration of Sac/Val demonstrated the potential to partially reverse alterations in protein expression within the myocardium of mice with DOX-induced cardiotoxicity by modulating the AMPKα-mTORC1 signaling pathway and suppressing oxidative stress. Additionally, Sac/Val treatment may mitigate Dox-induced apoptosis and inhibition of autophagy in primary cardiomyocytes. Sac/Val seems to be cardioprotective against DOX-induced cardiotoxicity in the pre-treatment mice model. These findings could be attributed to the anti-inflammatory, antioxidant, anti-apoptotic, and de-autophagy effects of Sac/Val through regulation of the AMPKα-mTORC1 signaling pathway.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05117-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05117-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Sacubitril/valsartan attenuated myocardial inflammation, fibrosis, apoptosis and promoted autophagy in doxorubicin-induced cardiotoxicity mice via regulating the AMPKα-mTORC1 signaling pathway.
This study aimed to investigate the potential cardioprotective effects of sacubitril/valsartan (Sac/Val) in mice with doxorubicin (DOX)-induced cardiomyopathy, a common manifestation of cancer therapy-related cardiac dysfunction (CTRCD) associated with DOX. A total of thirty-two mice were equally classified into 4 groups: control group, DOX (total 24 mg/kg), Sac/Val (80 mg/kg), and Sac/Val + DOX (Sac/Val was given from seven days before doxorubicin administration). Neonatal rat ventricular myocytes was exposed to 5 µM of DOX for 6 h in vitro to mimic the in vivo conditions. A variety of techniques were used to investigate cardiac inflammation, fibrosis, apoptosis, and autophagy, including western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry, and fluorescence. Mice with DOX-induced cardiotoxicity displayed impaired systolic and diastolic function, characterized by elevated levels of cardiac inflammation, fibrosis, cardiomyocyte hypertrophy, apoptosis, and autophagy inhibition in the heart. Treatment with Sac/Val partially reversed these effects. In comparison to the control group, the protein expression of NLRP3, caspase-1, collagen I, Bax, cleaved caspase-3, and P62 were significantly increased, while the protein expression of Bcl-2 and LC3-II were significantly decreased in the myocardial tissues of the Dox-induced cardiomyopathy group. The administration of Sac/Val demonstrated the potential to partially reverse alterations in protein expression within the myocardium of mice with DOX-induced cardiotoxicity by modulating the AMPKα-mTORC1 signaling pathway and suppressing oxidative stress. Additionally, Sac/Val treatment may mitigate Dox-induced apoptosis and inhibition of autophagy in primary cardiomyocytes. Sac/Val seems to be cardioprotective against DOX-induced cardiotoxicity in the pre-treatment mice model. These findings could be attributed to the anti-inflammatory, antioxidant, anti-apoptotic, and de-autophagy effects of Sac/Val through regulation of the AMPKα-mTORC1 signaling pathway.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.