集成成像探针和双特异性抗体开发,实现体内靶向治疗表达 glypican-3 的肝细胞癌。

IF 5.3 2区 医学 Q1 ONCOLOGY
Peiman Habibollahi, Alexey Gurevich, James Z Hui, Kelley Weinfurtner, George McClung, Justin Adler, Michael C Soulen, David E Kaplan, Gregory J Nadolski, Stephen J Hunt, Andrew Tsourkas, Terence P Gade
{"title":"集成成像探针和双特异性抗体开发,实现体内靶向治疗表达 glypican-3 的肝细胞癌。","authors":"Peiman Habibollahi, Alexey Gurevich, James Z Hui, Kelley Weinfurtner, George McClung, Justin Adler, Michael C Soulen, David E Kaplan, Gregory J Nadolski, Stephen J Hunt, Andrew Tsourkas, Terence P Gade","doi":"10.1158/1535-7163.MCT-23-0470","DOIUrl":null,"url":null,"abstract":"<p><p>Glypican-3 (GPC3) is a proteoglycan with high sensitivity and specificity for hepatocellular carcinoma (HCC). We describe the integrated development and validation of a GPC3-targeting optical imaging probe and T-cell redirecting antibody (TRAB) as a theranostic strategy for the detection and treatment of HCC. A novel TRAB targeting GPC3 on HCC tumor cells and the CD3 T-cell receptor as well as a distinct GPC3-specific optical imaging probe were developed from a short peptide. The efficacy of GPC3/CD3 TRAB was evaluated in vitro using interferon-γ release and calcein-AM assays. Patient-derived xenografts (PDX) were used to assess the in vivo efficacy of GPC3/CD3 TRAB and the GPC3 imaging probe for the detection of GPC3+ HCC. GPC3/CD3 TRAB caused a dose-dependent escalation in interferon-γ release from inactive peripheral blood T-cells (P = 0.001) and higher tumor-cell lysis (P = 0.01) compared to controls in vitro. Intratumorally injected GPC3/CD3 TRAB resulted in significant prolongation of tumor doubling time in the GPC3+ PDX mice, with an associated reduction of tumor fluorescent signal from the HiLyte 488- conjugated GPC3 specific peptide on optical imaging. HCC cell targeting using a GPC3/CD3 TRAB derived from a small peptide resulted in effective T-cell activation and induction of a cytotoxic response toward GPC3+ HCC tumor cells both in vitro and in vivo. GPC3-specific optical imaging enabled the detection of the GPC3+ HCC cells and noninvasive monitoring of tumor response to adoptive immunotherapy. The integrated development of a targeted therapeutic and molecular imaging probe provides a novel paradigm for developing cancer theranostics.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated imaging probe and bispecific antibody development enables in vivo targeting of glypican-3-expressing hepatocellular carcinoma.\",\"authors\":\"Peiman Habibollahi, Alexey Gurevich, James Z Hui, Kelley Weinfurtner, George McClung, Justin Adler, Michael C Soulen, David E Kaplan, Gregory J Nadolski, Stephen J Hunt, Andrew Tsourkas, Terence P Gade\",\"doi\":\"10.1158/1535-7163.MCT-23-0470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glypican-3 (GPC3) is a proteoglycan with high sensitivity and specificity for hepatocellular carcinoma (HCC). We describe the integrated development and validation of a GPC3-targeting optical imaging probe and T-cell redirecting antibody (TRAB) as a theranostic strategy for the detection and treatment of HCC. A novel TRAB targeting GPC3 on HCC tumor cells and the CD3 T-cell receptor as well as a distinct GPC3-specific optical imaging probe were developed from a short peptide. The efficacy of GPC3/CD3 TRAB was evaluated in vitro using interferon-γ release and calcein-AM assays. Patient-derived xenografts (PDX) were used to assess the in vivo efficacy of GPC3/CD3 TRAB and the GPC3 imaging probe for the detection of GPC3+ HCC. GPC3/CD3 TRAB caused a dose-dependent escalation in interferon-γ release from inactive peripheral blood T-cells (P = 0.001) and higher tumor-cell lysis (P = 0.01) compared to controls in vitro. Intratumorally injected GPC3/CD3 TRAB resulted in significant prolongation of tumor doubling time in the GPC3+ PDX mice, with an associated reduction of tumor fluorescent signal from the HiLyte 488- conjugated GPC3 specific peptide on optical imaging. HCC cell targeting using a GPC3/CD3 TRAB derived from a small peptide resulted in effective T-cell activation and induction of a cytotoxic response toward GPC3+ HCC tumor cells both in vitro and in vivo. GPC3-specific optical imaging enabled the detection of the GPC3+ HCC cells and noninvasive monitoring of tumor response to adoptive immunotherapy. The integrated development of a targeted therapeutic and molecular imaging probe provides a novel paradigm for developing cancer theranostics.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-23-0470\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Glypican-3(GPC3)是一种蛋白聚糖,对肝细胞癌(HCC)具有高灵敏度和特异性。我们介绍了 GPC3 靶向光学成像探针和 T 细胞重定向抗体(TRAB)作为检测和治疗 HCC 的治疗策略的综合开发和验证。研究人员利用一种短肽开发出了一种新型的针对 HCC 肿瘤细胞上的 GPC3 和 CD3 T 细胞受体的 TRAB 以及一种独特的 GPC3 特异性光学成像探针。利用干扰素-γ释放和钙黄绿素-AM测定法在体外评估了GPC3/CD3 TRAB的疗效。患者衍生异种移植(PDX)用于评估 GPC3/CD3 TRAB 和 GPC3 成像探针在检测 GPC3+ HCC 方面的体内疗效。与体外对照组相比,GPC3/CD3 TRAB 可使非活性外周血 T 细胞释放的干扰素-γ 呈剂量依赖性增加(P = 0.001),肿瘤细胞裂解率更高(P = 0.01)。瘤内注射 GPC3/CD3 TRAB 可显著延长 GPC3+ PDX 小鼠的肿瘤倍增时间,同时在光学成像中,HiLyte 488 共轭 GPC3 特异性肽的肿瘤荧光信号也会随之减少。使用源自小肽的 GPC3/CD3 TRAB 靶向 HCC 细胞可有效激活 T 细胞,并在体外和体内诱导针对 GPC3+ HCC 肿瘤细胞的细胞毒反应。GPC3特异性光学成像能够检测GPC3+ HCC细胞,并对肿瘤对采纳性免疫疗法的反应进行无创监测。靶向治疗和分子成像探针的综合开发为开发癌症治疗技术提供了一种新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated imaging probe and bispecific antibody development enables in vivo targeting of glypican-3-expressing hepatocellular carcinoma.

Glypican-3 (GPC3) is a proteoglycan with high sensitivity and specificity for hepatocellular carcinoma (HCC). We describe the integrated development and validation of a GPC3-targeting optical imaging probe and T-cell redirecting antibody (TRAB) as a theranostic strategy for the detection and treatment of HCC. A novel TRAB targeting GPC3 on HCC tumor cells and the CD3 T-cell receptor as well as a distinct GPC3-specific optical imaging probe were developed from a short peptide. The efficacy of GPC3/CD3 TRAB was evaluated in vitro using interferon-γ release and calcein-AM assays. Patient-derived xenografts (PDX) were used to assess the in vivo efficacy of GPC3/CD3 TRAB and the GPC3 imaging probe for the detection of GPC3+ HCC. GPC3/CD3 TRAB caused a dose-dependent escalation in interferon-γ release from inactive peripheral blood T-cells (P = 0.001) and higher tumor-cell lysis (P = 0.01) compared to controls in vitro. Intratumorally injected GPC3/CD3 TRAB resulted in significant prolongation of tumor doubling time in the GPC3+ PDX mice, with an associated reduction of tumor fluorescent signal from the HiLyte 488- conjugated GPC3 specific peptide on optical imaging. HCC cell targeting using a GPC3/CD3 TRAB derived from a small peptide resulted in effective T-cell activation and induction of a cytotoxic response toward GPC3+ HCC tumor cells both in vitro and in vivo. GPC3-specific optical imaging enabled the detection of the GPC3+ HCC cells and noninvasive monitoring of tumor response to adoptive immunotherapy. The integrated development of a targeted therapeutic and molecular imaging probe provides a novel paradigm for developing cancer theranostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信