Joel Gresham, Gerard Bruin, Marie Picci, Karoline Bechtold-Peters, Thomas Dimke, Evan Davies, Kasia Błażejczyk, Wouter Willekens, Heleen Fehervary, Greetje Vande Velde
{"title":"不同体积、粘度和注射速度的皮下注射的可视化和量化:体外显微 CT 研究。","authors":"Joel Gresham, Gerard Bruin, Marie Picci, Karoline Bechtold-Peters, Thomas Dimke, Evan Davies, Kasia Błażejczyk, Wouter Willekens, Heleen Fehervary, Greetje Vande Velde","doi":"10.1016/j.xphs.2024.08.019","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of subcutaneous (SC) injection parameters such as drug formulation volume, viscosity and injection rate on therapeutic performance and tolerability have not been established for any drug product. In this study four groups of SC injections were performed on fresh ex vivo minipig abdominal tissue samples, varying volume (0.5-1 mL), viscosity (1-11 cP) and rate (0.02-0.1 mL/s). Micro-CT provided high resolution (50 micron) imaging of the SC tissues before and after injection, enabling a detailed 3D visualisation and analysis of how both injection parameters and tissue microstructure influence spatial distribution of injectables. We found that volume was the only significant factor for spatial distribution of injectate within our design space, and there were no significant factors for tissue backpressure. Variability within test groups was typically greater than differences between group means. Accordingly, whilst the higher viscosity formulations consistently exhibited reduced spatial distribution, the sample size was not large enough to establish confidence in this result. Comparing our findings to clinical evidence, we conclude that injection site and depth are more likely to influence PK and bioavailability than volume, viscosity and rate within our experimental space.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":"3447-3456"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualisation and quantification of subcutaneous injections of different volumes, viscosities and injection rates: An ex-vivo micro-CT study.\",\"authors\":\"Joel Gresham, Gerard Bruin, Marie Picci, Karoline Bechtold-Peters, Thomas Dimke, Evan Davies, Kasia Błażejczyk, Wouter Willekens, Heleen Fehervary, Greetje Vande Velde\",\"doi\":\"10.1016/j.xphs.2024.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of subcutaneous (SC) injection parameters such as drug formulation volume, viscosity and injection rate on therapeutic performance and tolerability have not been established for any drug product. In this study four groups of SC injections were performed on fresh ex vivo minipig abdominal tissue samples, varying volume (0.5-1 mL), viscosity (1-11 cP) and rate (0.02-0.1 mL/s). Micro-CT provided high resolution (50 micron) imaging of the SC tissues before and after injection, enabling a detailed 3D visualisation and analysis of how both injection parameters and tissue microstructure influence spatial distribution of injectables. We found that volume was the only significant factor for spatial distribution of injectate within our design space, and there were no significant factors for tissue backpressure. Variability within test groups was typically greater than differences between group means. Accordingly, whilst the higher viscosity formulations consistently exhibited reduced spatial distribution, the sample size was not large enough to establish confidence in this result. Comparing our findings to clinical evidence, we conclude that injection site and depth are more likely to influence PK and bioavailability than volume, viscosity and rate within our experimental space.</p>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":\" \",\"pages\":\"3447-3456\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xphs.2024.08.019\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.08.019","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Visualisation and quantification of subcutaneous injections of different volumes, viscosities and injection rates: An ex-vivo micro-CT study.
The effects of subcutaneous (SC) injection parameters such as drug formulation volume, viscosity and injection rate on therapeutic performance and tolerability have not been established for any drug product. In this study four groups of SC injections were performed on fresh ex vivo minipig abdominal tissue samples, varying volume (0.5-1 mL), viscosity (1-11 cP) and rate (0.02-0.1 mL/s). Micro-CT provided high resolution (50 micron) imaging of the SC tissues before and after injection, enabling a detailed 3D visualisation and analysis of how both injection parameters and tissue microstructure influence spatial distribution of injectables. We found that volume was the only significant factor for spatial distribution of injectate within our design space, and there were no significant factors for tissue backpressure. Variability within test groups was typically greater than differences between group means. Accordingly, whilst the higher viscosity formulations consistently exhibited reduced spatial distribution, the sample size was not large enough to establish confidence in this result. Comparing our findings to clinical evidence, we conclude that injection site and depth are more likely to influence PK and bioavailability than volume, viscosity and rate within our experimental space.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.