Laurie Frances, Mikael Croyal, Soline Pittet, Léa Da Costa Fernandes, Milan Boulaire, Laurent Monbrun, Ellen E Blaak, Christina Christoffersen, Cédric Moro, Geneviève Tavernier, Nathalie Viguerie
{"title":"脂肪细胞载脂蛋白 M 与炎症呈负相关。","authors":"Laurie Frances, Mikael Croyal, Soline Pittet, Léa Da Costa Fernandes, Milan Boulaire, Laurent Monbrun, Ellen E Blaak, Christina Christoffersen, Cédric Moro, Geneviève Tavernier, Nathalie Viguerie","doi":"10.1016/j.jlr.2024.100648","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is associated with the development of local adipose tissue (AT) and systemic inflammation. Most adipokines are upregulated with obesity and have pro-inflammatory properties. Few are downregulated and possess beneficial anti-inflammatory effects. The apolipoprotein M (APOM) is an adipokine whose expression is low during obesity and associated with a metabolically healthy AT. Here, the role of adipose-derived APOM on obesity-associated AT inflammation was investigated by measuring the expression of pro-inflammatory genes in human and mouse models. In 300 individuals with obesity, AT APOM mRNA level was negatively associated with plasma hs-CRP. The inflammatory profile was assessed in Apom<sup>-/-</sup> and WT mice fed a normal chow diet (NCD), or a high-fat diet (HFD) to induce AT inflammation. After HFD, mice had a higher inflammatory profile in AT and liver, and a 50% lower Apom gene expression compared with NCD-fed mice. Apom deficiency was associated with a higher inflammatory signature in AT compared with WT mice but not in the liver. Adeno-associated viruses encoding human APOM were used to induce APOM overexpression: in vivo, in WT mice AT prior to HFD; in vitro, in human adipocytes which conditioned media was applied to ThP-1 macrophages. The murine AT overexpressing APOM gene had a reduced inflammatory profile. The macrophages treated with APOM-enriched media from adipocytes exhibited lower IL6 and MCP1 gene expression compared with macrophages treated with control media, independently of S1P. Our study highlights the protective role of adipocyte APOM against obesity-induced AT inflammation.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100648"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513530/pdf/","citationCount":"0","resultStr":"{\"title\":\"The adipocyte apolipoprotein M is negatively associated with inflammation.\",\"authors\":\"Laurie Frances, Mikael Croyal, Soline Pittet, Léa Da Costa Fernandes, Milan Boulaire, Laurent Monbrun, Ellen E Blaak, Christina Christoffersen, Cédric Moro, Geneviève Tavernier, Nathalie Viguerie\",\"doi\":\"10.1016/j.jlr.2024.100648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity is associated with the development of local adipose tissue (AT) and systemic inflammation. Most adipokines are upregulated with obesity and have pro-inflammatory properties. Few are downregulated and possess beneficial anti-inflammatory effects. The apolipoprotein M (APOM) is an adipokine whose expression is low during obesity and associated with a metabolically healthy AT. Here, the role of adipose-derived APOM on obesity-associated AT inflammation was investigated by measuring the expression of pro-inflammatory genes in human and mouse models. In 300 individuals with obesity, AT APOM mRNA level was negatively associated with plasma hs-CRP. The inflammatory profile was assessed in Apom<sup>-/-</sup> and WT mice fed a normal chow diet (NCD), or a high-fat diet (HFD) to induce AT inflammation. After HFD, mice had a higher inflammatory profile in AT and liver, and a 50% lower Apom gene expression compared with NCD-fed mice. Apom deficiency was associated with a higher inflammatory signature in AT compared with WT mice but not in the liver. Adeno-associated viruses encoding human APOM were used to induce APOM overexpression: in vivo, in WT mice AT prior to HFD; in vitro, in human adipocytes which conditioned media was applied to ThP-1 macrophages. The murine AT overexpressing APOM gene had a reduced inflammatory profile. The macrophages treated with APOM-enriched media from adipocytes exhibited lower IL6 and MCP1 gene expression compared with macrophages treated with control media, independently of S1P. Our study highlights the protective role of adipocyte APOM against obesity-induced AT inflammation.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100648\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2024.100648\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100648","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
肥胖与局部脂肪组织(AT)和全身炎症的发展有关。大多数脂肪因子会随着肥胖而上调,并具有促炎特性。少数脂肪因子会下调,并具有有益的抗炎作用。载脂蛋白 M(APOM)是一种脂肪因子,在肥胖时其表达量较低,并与代谢健康的 AT 有关。在这里,我们通过测量人和小鼠模型中促炎症基因的表达,研究了脂肪来源的载脂蛋白M对肥胖相关的动脉粥样硬化炎症的作用。在 300 名肥胖症患者中,自动脉粥样硬化蛋白 mRNA 水平与血浆 hs-CRP 呈负相关。对Apom-/-和WT小鼠的炎症概况进行了评估,这些小鼠喂食正常饲料(NCD)或高脂饲料(HFD)以诱发AT炎症。与喂食正常饲料的小鼠相比,喂食高脂饮食后,小鼠血管内皮和肝脏的炎症程度更高,Apom基因表达量降低了50%。与 WT 小鼠相比,Apom 缺乏与 AT 中较高的炎症特征有关,但与肝脏无关。编码人APOM的腺相关病毒被用来诱导APOM的过表达:在体内,在WT小鼠AT中,在高脂饮食之前;在体外,在人脂肪细胞中,将条件培养基应用于ThP-1巨噬细胞。过表达 APOM 基因的小鼠自体脂肪细胞的炎症特征有所减轻。与用对照培养基处理的巨噬细胞相比,用富含脂肪细胞APOM的培养基处理的巨噬细胞表现出较低的IL6和MCP1基因表达,这与S1P无关。我们的研究强调了脂肪细胞APOM对肥胖诱导的AT炎症的保护作用。
The adipocyte apolipoprotein M is negatively associated with inflammation.
Obesity is associated with the development of local adipose tissue (AT) and systemic inflammation. Most adipokines are upregulated with obesity and have pro-inflammatory properties. Few are downregulated and possess beneficial anti-inflammatory effects. The apolipoprotein M (APOM) is an adipokine whose expression is low during obesity and associated with a metabolically healthy AT. Here, the role of adipose-derived APOM on obesity-associated AT inflammation was investigated by measuring the expression of pro-inflammatory genes in human and mouse models. In 300 individuals with obesity, AT APOM mRNA level was negatively associated with plasma hs-CRP. The inflammatory profile was assessed in Apom-/- and WT mice fed a normal chow diet (NCD), or a high-fat diet (HFD) to induce AT inflammation. After HFD, mice had a higher inflammatory profile in AT and liver, and a 50% lower Apom gene expression compared with NCD-fed mice. Apom deficiency was associated with a higher inflammatory signature in AT compared with WT mice but not in the liver. Adeno-associated viruses encoding human APOM were used to induce APOM overexpression: in vivo, in WT mice AT prior to HFD; in vitro, in human adipocytes which conditioned media was applied to ThP-1 macrophages. The murine AT overexpressing APOM gene had a reduced inflammatory profile. The macrophages treated with APOM-enriched media from adipocytes exhibited lower IL6 and MCP1 gene expression compared with macrophages treated with control media, independently of S1P. Our study highlights the protective role of adipocyte APOM against obesity-induced AT inflammation.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.