Juyeon Kim, Young Sik Park, Jin Hee Kim, Yun-Chul Hong, Young-Chul Kim, In-Jae Oh, Sun Ha Jee, Myung-Ju Ahn, Jong-Won Kim, Jae-Joon Yim, Sungho Won
{"title":"用多基因风险评分预测韩国从不吸烟者的肺癌发病率","authors":"Juyeon Kim, Young Sik Park, Jin Hee Kim, Yun-Chul Hong, Young-Chul Kim, In-Jae Oh, Sun Ha Jee, Myung-Ju Ahn, Jong-Won Kim, Jae-Joon Yim, Sungho Won","doi":"10.1002/gepi.22586","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the last few decades, genome-wide association studies (GWAS) with more than 10,000 subjects have identified several loci associated with lung cancer and these loci have been used to develop novel risk prediction tools for cancer. The present study aimed to establish a lung cancer prediction model for Korean never-smokers using polygenic risk scores (PRSs); PRSs were calculated using a pruning-thresholding-based approach based on 11 genome-wide significant single nucleotide polymorphisms (SNPs). Overall, the odds ratios tended to increase as PRSs were larger, with the odds ratio of the top 5% PRSs being 1.71 (95% confidence interval: 1.31–2.23) using the 40%–60% percentile group as the reference, and the area under the curve (AUC) of the prediction model being of 0.76 (95% confidence interval: 0.747–0.774). The receiver operating characteristic (ROC) curves of the prediction model with and without PRSs as covariates were compared using DeLong's test, and a significant difference was observed. Our results suggest that PRSs can be valuable tools for predicting the risk of lung cancer.</p>\n </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Lung Cancer in Korean Never-Smokers With Polygenic Risk Scores\",\"authors\":\"Juyeon Kim, Young Sik Park, Jin Hee Kim, Yun-Chul Hong, Young-Chul Kim, In-Jae Oh, Sun Ha Jee, Myung-Ju Ahn, Jong-Won Kim, Jae-Joon Yim, Sungho Won\",\"doi\":\"10.1002/gepi.22586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the last few decades, genome-wide association studies (GWAS) with more than 10,000 subjects have identified several loci associated with lung cancer and these loci have been used to develop novel risk prediction tools for cancer. The present study aimed to establish a lung cancer prediction model for Korean never-smokers using polygenic risk scores (PRSs); PRSs were calculated using a pruning-thresholding-based approach based on 11 genome-wide significant single nucleotide polymorphisms (SNPs). Overall, the odds ratios tended to increase as PRSs were larger, with the odds ratio of the top 5% PRSs being 1.71 (95% confidence interval: 1.31–2.23) using the 40%–60% percentile group as the reference, and the area under the curve (AUC) of the prediction model being of 0.76 (95% confidence interval: 0.747–0.774). The receiver operating characteristic (ROC) curves of the prediction model with and without PRSs as covariates were compared using DeLong's test, and a significant difference was observed. Our results suggest that PRSs can be valuable tools for predicting the risk of lung cancer.</p>\\n </div>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22586\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22586","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Predicting Lung Cancer in Korean Never-Smokers With Polygenic Risk Scores
In the last few decades, genome-wide association studies (GWAS) with more than 10,000 subjects have identified several loci associated with lung cancer and these loci have been used to develop novel risk prediction tools for cancer. The present study aimed to establish a lung cancer prediction model for Korean never-smokers using polygenic risk scores (PRSs); PRSs were calculated using a pruning-thresholding-based approach based on 11 genome-wide significant single nucleotide polymorphisms (SNPs). Overall, the odds ratios tended to increase as PRSs were larger, with the odds ratio of the top 5% PRSs being 1.71 (95% confidence interval: 1.31–2.23) using the 40%–60% percentile group as the reference, and the area under the curve (AUC) of the prediction model being of 0.76 (95% confidence interval: 0.747–0.774). The receiver operating characteristic (ROC) curves of the prediction model with and without PRSs as covariates were compared using DeLong's test, and a significant difference was observed. Our results suggest that PRSs can be valuable tools for predicting the risk of lung cancer.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.