通过网络分析对胰腺导管腺癌进行分期分析。

Q3 Medicine
Ayad Bahadorimonfared, Masoumeh Farahani, Mostafa Rezaei Tavirani, Zahra Razzaghi, Babak Arjmand, Mitra Rezaei, Abdolrahim Nikzamir, Mohammad Javad Ehsani Ardakani, Vahid Mansouri
{"title":"通过网络分析对胰腺导管腺癌进行分期分析。","authors":"Ayad Bahadorimonfared, Masoumeh Farahani, Mostafa Rezaei Tavirani, Zahra Razzaghi, Babak Arjmand, Mitra Rezaei, Abdolrahim Nikzamir, Mohammad Javad Ehsani Ardakani, Vahid Mansouri","doi":"10.22037/ghfbb.v17i3.2887","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to introduce a biomarker panel to detect pancreatic ductal adenocarcinoma (PDAC) in the early stage, and also differentiate of stages from each other.</p><p><strong>Background: </strong>PDAC is a lethal cancer with poor prognosis and overall survival.</p><p><strong>Methods: </strong>Gene expression profiles of PDAC patients were extracted from the Gene Expression Omnibus (GEO) database. The genes that were significantly differentially expressed (DEGs) for Stages I, II, and III in comparison to the healthy controls were identified. The determined DEGs were assessed via protein-protein interaction (PPI) network analysis, and the hub-bottleneck nodes of analyzed networks were introduced.</p><p><strong>Results: </strong>A number of 140, 874, and 1519 significant DEGs were evaluated via PPI network analysis. A biomarker panel including ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 is presented as a biomarker panel to detect PDAC in the early stage. Two biomarker panels are suggested to recognize other stages of illness.</p><p><strong>Conclusion: </strong>It can be concluded that ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 and also FN1, HSP90AA1, LOX, ANXA5, SERPINE1, and WWP2 beside GAPDH, AKT1, EGF, CASP3 are suitable sets of gene to separate stages of PDAC.</p>","PeriodicalId":12636,"journal":{"name":"Gastroenterology and Hepatology From Bed to Bench","volume":"17 3","pages":"297-3030"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413388/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stage analysis of pancreatic ductal adenocarcinoma via network analysis.\",\"authors\":\"Ayad Bahadorimonfared, Masoumeh Farahani, Mostafa Rezaei Tavirani, Zahra Razzaghi, Babak Arjmand, Mitra Rezaei, Abdolrahim Nikzamir, Mohammad Javad Ehsani Ardakani, Vahid Mansouri\",\"doi\":\"10.22037/ghfbb.v17i3.2887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>This study aimed to introduce a biomarker panel to detect pancreatic ductal adenocarcinoma (PDAC) in the early stage, and also differentiate of stages from each other.</p><p><strong>Background: </strong>PDAC is a lethal cancer with poor prognosis and overall survival.</p><p><strong>Methods: </strong>Gene expression profiles of PDAC patients were extracted from the Gene Expression Omnibus (GEO) database. The genes that were significantly differentially expressed (DEGs) for Stages I, II, and III in comparison to the healthy controls were identified. The determined DEGs were assessed via protein-protein interaction (PPI) network analysis, and the hub-bottleneck nodes of analyzed networks were introduced.</p><p><strong>Results: </strong>A number of 140, 874, and 1519 significant DEGs were evaluated via PPI network analysis. A biomarker panel including ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 is presented as a biomarker panel to detect PDAC in the early stage. Two biomarker panels are suggested to recognize other stages of illness.</p><p><strong>Conclusion: </strong>It can be concluded that ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 and also FN1, HSP90AA1, LOX, ANXA5, SERPINE1, and WWP2 beside GAPDH, AKT1, EGF, CASP3 are suitable sets of gene to separate stages of PDAC.</p>\",\"PeriodicalId\":12636,\"journal\":{\"name\":\"Gastroenterology and Hepatology From Bed to Bench\",\"volume\":\"17 3\",\"pages\":\"297-3030\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413388/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterology and Hepatology From Bed to Bench\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22037/ghfbb.v17i3.2887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology and Hepatology From Bed to Bench","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22037/ghfbb.v17i3.2887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在引入一种生物标记物面板,以检测早期胰腺导管腺癌(PDAC),并区分不同阶段:背景:PDAC是一种致命的癌症,预后和总生存率都很低:方法:从基因表达总库(GEO)数据库中提取 PDAC 患者的基因表达谱。方法:从基因表达总库(GEO)数据库中提取了 PDAC 患者的基因表达图谱,并确定了与健康对照组相比,I、II 和 III 期患者中存在明显差异表达(DEGs)的基因。通过蛋白质-蛋白质相互作用(PPI)网络分析对确定的 DEGs 进行评估,并引入分析网络的枢纽-瓶颈节点:结果:通过PPI网络分析评估了140、874和1519个重要的DEGs。包括 ALB、CTNNB1、COL1A1、POSTN、LUM 和 ANXA2 在内的一个生物标记物面板可作为早期检测 PDAC 的生物标记物面板。结论:结论:ALB、CTNNB1、COL1A1、POSTN、LUM 和 ANXA2,以及 FN1、HSP90AA1、LOX、ANXA5、SERPINE1 和 WWP2,还有 GAPDH、AKT1、EGF、CASP3,都是区分 PDAC 阶段的合适基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stage analysis of pancreatic ductal adenocarcinoma via network analysis.

Aim: This study aimed to introduce a biomarker panel to detect pancreatic ductal adenocarcinoma (PDAC) in the early stage, and also differentiate of stages from each other.

Background: PDAC is a lethal cancer with poor prognosis and overall survival.

Methods: Gene expression profiles of PDAC patients were extracted from the Gene Expression Omnibus (GEO) database. The genes that were significantly differentially expressed (DEGs) for Stages I, II, and III in comparison to the healthy controls were identified. The determined DEGs were assessed via protein-protein interaction (PPI) network analysis, and the hub-bottleneck nodes of analyzed networks were introduced.

Results: A number of 140, 874, and 1519 significant DEGs were evaluated via PPI network analysis. A biomarker panel including ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 is presented as a biomarker panel to detect PDAC in the early stage. Two biomarker panels are suggested to recognize other stages of illness.

Conclusion: It can be concluded that ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 and also FN1, HSP90AA1, LOX, ANXA5, SERPINE1, and WWP2 beside GAPDH, AKT1, EGF, CASP3 are suitable sets of gene to separate stages of PDAC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信