人工智能与生物信息学:从传统技术到智能方法的旅程。

Q3 Medicine
Hamid Jamialahmadi, Ghazaleh Khalili-Tanha, Elham Nazari, Mostafa Rezaei-Tavirani
{"title":"人工智能与生物信息学:从传统技术到智能方法的旅程。","authors":"Hamid Jamialahmadi, Ghazaleh Khalili-Tanha, Elham Nazari, Mostafa Rezaei-Tavirani","doi":"10.22037/ghfbb.v17i3.2977","DOIUrl":null,"url":null,"abstract":"<p><p>The incorporation of AI models into bioinformatics has brought about a revolutionary era in the analysis and interpretation of biological data. This mini-review offers a succinct overview of the indispensable role AI plays in the convergence of computational techniques and biological research. The search strategy followed PRISMA guidelines, encompassing databases such as PubMed, Embase, and Google Scholar to include studies published between 2018 and 2024, utilizing specific keywords. We explored the diverse applications of AI methodologies, including machine learning (ML), deep learning (DL), and natural language processing (NLP), across various domains of bioinformatics. These domains encompass genome sequencing, protein structure prediction, drug discovery, systems biology, personalized medicine, imaging, signal processing, and text mining. AI algorithms have exhibited remarkable efficacy in tackling intricate biological challenges, spanning from genome sequencing to protein structure prediction, and from drug discovery to personalized medicine. In conclusion, this study scrutinizes the evolving landscape of AI-driven tools and algorithms, emphasizing their pivotal role in expediting research, facilitating data interpretation, and catalyzing innovations in biomedical sciences.</p>","PeriodicalId":12636,"journal":{"name":"Gastroenterology and Hepatology From Bed to Bench","volume":"17 3","pages":"241-252"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence and bioinformatics: a journey from traditional techniques to smart approaches.\",\"authors\":\"Hamid Jamialahmadi, Ghazaleh Khalili-Tanha, Elham Nazari, Mostafa Rezaei-Tavirani\",\"doi\":\"10.22037/ghfbb.v17i3.2977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The incorporation of AI models into bioinformatics has brought about a revolutionary era in the analysis and interpretation of biological data. This mini-review offers a succinct overview of the indispensable role AI plays in the convergence of computational techniques and biological research. The search strategy followed PRISMA guidelines, encompassing databases such as PubMed, Embase, and Google Scholar to include studies published between 2018 and 2024, utilizing specific keywords. We explored the diverse applications of AI methodologies, including machine learning (ML), deep learning (DL), and natural language processing (NLP), across various domains of bioinformatics. These domains encompass genome sequencing, protein structure prediction, drug discovery, systems biology, personalized medicine, imaging, signal processing, and text mining. AI algorithms have exhibited remarkable efficacy in tackling intricate biological challenges, spanning from genome sequencing to protein structure prediction, and from drug discovery to personalized medicine. In conclusion, this study scrutinizes the evolving landscape of AI-driven tools and algorithms, emphasizing their pivotal role in expediting research, facilitating data interpretation, and catalyzing innovations in biomedical sciences.</p>\",\"PeriodicalId\":12636,\"journal\":{\"name\":\"Gastroenterology and Hepatology From Bed to Bench\",\"volume\":\"17 3\",\"pages\":\"241-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterology and Hepatology From Bed to Bench\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22037/ghfbb.v17i3.2977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology and Hepatology From Bed to Bench","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22037/ghfbb.v17i3.2977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

将人工智能模型融入生物信息学为生物数据的分析和解读带来了一个革命性的时代。这篇微型综述简明扼要地概述了人工智能在计算技术与生物研究的融合中所发挥的不可或缺的作用。检索策略遵循PRISMA指南,包括PubMed、Embase和谷歌学术等数据库,利用特定关键词,纳入2018年至2024年发表的研究。我们探索了人工智能方法在生物信息学各个领域的不同应用,包括机器学习(ML)、深度学习(DL)和自然语言处理(NLP)。这些领域包括基因组测序、蛋白质结构预测、药物发现、系统生物学、个性化医疗、成像、信号处理和文本挖掘。从基因组测序到蛋白质结构预测,从药物发现到个性化医疗,人工智能算法在应对错综复杂的生物挑战方面表现出了卓越的功效。总之,本研究仔细审视了人工智能驱动的工具和算法不断演变的格局,强调了它们在加速研究、促进数据解读和推动生物医学创新方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence and bioinformatics: a journey from traditional techniques to smart approaches.

The incorporation of AI models into bioinformatics has brought about a revolutionary era in the analysis and interpretation of biological data. This mini-review offers a succinct overview of the indispensable role AI plays in the convergence of computational techniques and biological research. The search strategy followed PRISMA guidelines, encompassing databases such as PubMed, Embase, and Google Scholar to include studies published between 2018 and 2024, utilizing specific keywords. We explored the diverse applications of AI methodologies, including machine learning (ML), deep learning (DL), and natural language processing (NLP), across various domains of bioinformatics. These domains encompass genome sequencing, protein structure prediction, drug discovery, systems biology, personalized medicine, imaging, signal processing, and text mining. AI algorithms have exhibited remarkable efficacy in tackling intricate biological challenges, spanning from genome sequencing to protein structure prediction, and from drug discovery to personalized medicine. In conclusion, this study scrutinizes the evolving landscape of AI-driven tools and algorithms, emphasizing their pivotal role in expediting research, facilitating data interpretation, and catalyzing innovations in biomedical sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信