濒危长江江豚和东亚江豚端粒间无间隙基因组组装。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Denghua Yin, Chunhai Chen, Danqing Lin, Zhong Hua, Congping Ying, Jialu Zhang, Chenxi Zhao, Yan Liu, Zhichen Cao, Han Zhang, Chenhe Wang, Liping Liang, Pao Xu, Jianbo Jian, Kai Liu
{"title":"濒危长江江豚和东亚江豚端粒间无间隙基因组组装。","authors":"Denghua Yin, Chunhai Chen, Danqing Lin, Zhong Hua, Congping Ying, Jialu Zhang, Chenxi Zhao, Yan Liu, Zhichen Cao, Han Zhang, Chenhe Wang, Liping Liang, Pao Xu, Jianbo Jian, Kai Liu","doi":"10.1093/gigascience/giae067","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) and the East Asian finless porpoise (Neophocaena asiaeorientalis sunameri, EFP) are 2 subspecies of the narrow-ridged finless porpoise that live in freshwater and saltwater, respectively. The main objective of this study was to provide contiguous chromosome-level genome assemblies for YFP and EFP.</p><p><strong>Results: </strong>Here, we generated and upgraded the genomes of YFP and EFP at the telomere-to-telomere level through the integration of PacBio HiFi long reads, ultra-long ONT reads, and Hi-C sequencing data with a total size of 2.48 Gb and 2.50 Gb, respectively. The scaffold N50 of 2 genomes was 125.12 Mb (YFP) and 128 Mb (EFP) with 1 contig for 1 chromosome. The telomere repeat and centromere position were clearly identified in both YFP and EFP genomes. In total, 5,480 newfound genes were detected in the YFP genome, including 56 genes located in the newly identified centromere regions. Additionally, synteny blocks, structural similarities, phylogenetic relationships, gene family expansion, and inference of selection were studied in connection with the genomes of other related mammals.</p><p><strong>Conclusions: </strong>Our research findings provide evidence for the gradual adaptation of EFP in a marine environment and the potential sensitivity of YFP to genetic damage. Compared to the 34 cetacean genomes sourced from public databases, the 2 new assemblies demonstrate superior continuity with the longest contig N50 and scaffold N50 values, as well as the lowest number of contigs. The improvement of telomere-to-telomere gap-free reference genome resources supports conservation genetics and population management for finless porpoises.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403816/pdf/","citationCount":"0","resultStr":"{\"title\":\"Telomere-to-telomere gap-free genome assembly of the endangered Yangtze finless porpoise and East Asian finless porpoise.\",\"authors\":\"Denghua Yin, Chunhai Chen, Danqing Lin, Zhong Hua, Congping Ying, Jialu Zhang, Chenxi Zhao, Yan Liu, Zhichen Cao, Han Zhang, Chenhe Wang, Liping Liang, Pao Xu, Jianbo Jian, Kai Liu\",\"doi\":\"10.1093/gigascience/giae067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) and the East Asian finless porpoise (Neophocaena asiaeorientalis sunameri, EFP) are 2 subspecies of the narrow-ridged finless porpoise that live in freshwater and saltwater, respectively. The main objective of this study was to provide contiguous chromosome-level genome assemblies for YFP and EFP.</p><p><strong>Results: </strong>Here, we generated and upgraded the genomes of YFP and EFP at the telomere-to-telomere level through the integration of PacBio HiFi long reads, ultra-long ONT reads, and Hi-C sequencing data with a total size of 2.48 Gb and 2.50 Gb, respectively. The scaffold N50 of 2 genomes was 125.12 Mb (YFP) and 128 Mb (EFP) with 1 contig for 1 chromosome. The telomere repeat and centromere position were clearly identified in both YFP and EFP genomes. In total, 5,480 newfound genes were detected in the YFP genome, including 56 genes located in the newly identified centromere regions. Additionally, synteny blocks, structural similarities, phylogenetic relationships, gene family expansion, and inference of selection were studied in connection with the genomes of other related mammals.</p><p><strong>Conclusions: </strong>Our research findings provide evidence for the gradual adaptation of EFP in a marine environment and the potential sensitivity of YFP to genetic damage. Compared to the 34 cetacean genomes sourced from public databases, the 2 new assemblies demonstrate superior continuity with the longest contig N50 and scaffold N50 values, as well as the lowest number of contigs. The improvement of telomere-to-telomere gap-free reference genome resources supports conservation genetics and population management for finless porpoises.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403816/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giae067\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae067","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:长江江豚(Neophocaena asiaeorientalis asiaeorientalis,YFP)和东亚江豚(Neophocaena asiaeorientalis sunameri,EFP)是窄脊江豚的两个亚种,分别生活在淡水和海水中。本研究的主要目的是为YFP和EFP提供连续的染色体级基因组组装:在这里,我们通过整合 PacBio HiFi 长读数、超长 ONT 读数和 Hi-C 测序数据,生成并升级了 YFP 和 EFP 的端粒到端粒水平的基因组,总大小分别为 2.48 Gb 和 2.50 Gb。两个基因组的支架 N50 分别为 125.12 Mb(YFP)和 128 Mb(EFP),1 条染色体有 1 个 contig。在 YFP 和 EFP 基因组中,端粒重复和中心粒位置都被清楚地识别出来。在 YFP 基因组中总共检测到 5480 个新发现的基因,其中 56 个基因位于新发现的中心粒区域。此外,我们还结合其他相关哺乳动物的基因组,对同源区块、结构相似性、系统发育关系、基因家族扩展和选择推断进行了研究:我们的研究结果为EFP在海洋环境中的逐步适应以及YFP对遗传损伤的潜在敏感性提供了证据。与从公共数据库中获取的34个鲸类基因组相比,这两个新的基因组以最长的等位基因N50值和支架N50值以及最少的等位基因数量表现出更高的连续性。端粒间无间隙参考基因组资源的改进有助于江豚的保护遗传学和种群管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Telomere-to-telomere gap-free genome assembly of the endangered Yangtze finless porpoise and East Asian finless porpoise.

Background: The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) and the East Asian finless porpoise (Neophocaena asiaeorientalis sunameri, EFP) are 2 subspecies of the narrow-ridged finless porpoise that live in freshwater and saltwater, respectively. The main objective of this study was to provide contiguous chromosome-level genome assemblies for YFP and EFP.

Results: Here, we generated and upgraded the genomes of YFP and EFP at the telomere-to-telomere level through the integration of PacBio HiFi long reads, ultra-long ONT reads, and Hi-C sequencing data with a total size of 2.48 Gb and 2.50 Gb, respectively. The scaffold N50 of 2 genomes was 125.12 Mb (YFP) and 128 Mb (EFP) with 1 contig for 1 chromosome. The telomere repeat and centromere position were clearly identified in both YFP and EFP genomes. In total, 5,480 newfound genes were detected in the YFP genome, including 56 genes located in the newly identified centromere regions. Additionally, synteny blocks, structural similarities, phylogenetic relationships, gene family expansion, and inference of selection were studied in connection with the genomes of other related mammals.

Conclusions: Our research findings provide evidence for the gradual adaptation of EFP in a marine environment and the potential sensitivity of YFP to genetic damage. Compared to the 34 cetacean genomes sourced from public databases, the 2 new assemblies demonstrate superior continuity with the longest contig N50 and scaffold N50 values, as well as the lowest number of contigs. The improvement of telomere-to-telomere gap-free reference genome resources supports conservation genetics and population management for finless porpoises.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信