{"title":"低温电子断层扫描揭示的 CTPS 纤维网络结构。","authors":"You Fu , Chen-Jun Guo , Zhi-Jie Liu , Ji-Long Liu","doi":"10.1016/j.yexcr.2024.114262","DOIUrl":null,"url":null,"abstract":"<div><div>The cytoophidium is a novel type of membraneless organelle, first observed in the ovaries of <em>Drosophila</em> using fluorescence microscopy. <em>In vitro</em>, purified <em>Drosophila melanogaster</em> CTPS (dmCTPS) can form metabolic filaments under the presence of either substrates or products, and their structures that have been analyzed using cryo-electron microscopy (cryo-EM). These dmCTPS filaments are considered the fundamental units of cytoophidia. However, due to the resolution gap between light and electron microscopy, the precise assembly pattern of cytoophidia remains unclear. In this study, we find that dmCTPS filaments can spontaneously assemble <em>in vitro</em>, forming network structures that reach micron-scale dimensions. Using cryo-electron tomography (cryo-ET), we reconstruct the network structures formed by dmCTPS filaments under substrate or product binding conditions and elucidate their assembly process. The dmCTPS filaments initially form structural bundles, which then further assemble into larger networks. By identifying, tracking, and statistically analyzing the filaments, we observed distinct characteristics of the structural bundles formed under different conditions. This study provides the first systematic analysis of dmCTPS filament networks, offering new insights into the relationship between cytoophidia and metabolic filaments.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114262"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0014482724003537/pdfft?md5=24f45cf814818b4c23776844d32d213c&pid=1-s2.0-S0014482724003537-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Architecture of CTPS filament networks revealed by cryo-electron tomography\",\"authors\":\"You Fu , Chen-Jun Guo , Zhi-Jie Liu , Ji-Long Liu\",\"doi\":\"10.1016/j.yexcr.2024.114262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cytoophidium is a novel type of membraneless organelle, first observed in the ovaries of <em>Drosophila</em> using fluorescence microscopy. <em>In vitro</em>, purified <em>Drosophila melanogaster</em> CTPS (dmCTPS) can form metabolic filaments under the presence of either substrates or products, and their structures that have been analyzed using cryo-electron microscopy (cryo-EM). These dmCTPS filaments are considered the fundamental units of cytoophidia. However, due to the resolution gap between light and electron microscopy, the precise assembly pattern of cytoophidia remains unclear. In this study, we find that dmCTPS filaments can spontaneously assemble <em>in vitro</em>, forming network structures that reach micron-scale dimensions. Using cryo-electron tomography (cryo-ET), we reconstruct the network structures formed by dmCTPS filaments under substrate or product binding conditions and elucidate their assembly process. The dmCTPS filaments initially form structural bundles, which then further assemble into larger networks. By identifying, tracking, and statistically analyzing the filaments, we observed distinct characteristics of the structural bundles formed under different conditions. This study provides the first systematic analysis of dmCTPS filament networks, offering new insights into the relationship between cytoophidia and metabolic filaments.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 2\",\"pages\":\"Article 114262\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003537/pdfft?md5=24f45cf814818b4c23776844d32d213c&pid=1-s2.0-S0014482724003537-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003537\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003537","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Architecture of CTPS filament networks revealed by cryo-electron tomography
The cytoophidium is a novel type of membraneless organelle, first observed in the ovaries of Drosophila using fluorescence microscopy. In vitro, purified Drosophila melanogaster CTPS (dmCTPS) can form metabolic filaments under the presence of either substrates or products, and their structures that have been analyzed using cryo-electron microscopy (cryo-EM). These dmCTPS filaments are considered the fundamental units of cytoophidia. However, due to the resolution gap between light and electron microscopy, the precise assembly pattern of cytoophidia remains unclear. In this study, we find that dmCTPS filaments can spontaneously assemble in vitro, forming network structures that reach micron-scale dimensions. Using cryo-electron tomography (cryo-ET), we reconstruct the network structures formed by dmCTPS filaments under substrate or product binding conditions and elucidate their assembly process. The dmCTPS filaments initially form structural bundles, which then further assemble into larger networks. By identifying, tracking, and statistically analyzing the filaments, we observed distinct characteristics of the structural bundles formed under different conditions. This study provides the first systematic analysis of dmCTPS filament networks, offering new insights into the relationship between cytoophidia and metabolic filaments.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.