Mohammad Tollabi, Zahra Poursalehi, Parichehr Mehrafshar, Rayhaneh Bakhtiari, Vahid Hosseinpour Sarmadi, Lobat Tayebi, Seyed Mohammad Amin Haramshahi
{"title":"深入了解整合素和整合素靶向生物材料在骨再生中的作用。","authors":"Mohammad Tollabi, Zahra Poursalehi, Parichehr Mehrafshar, Rayhaneh Bakhtiari, Vahid Hosseinpour Sarmadi, Lobat Tayebi, Seyed Mohammad Amin Haramshahi","doi":"10.1080/03008207.2024.2396002","DOIUrl":null,"url":null,"abstract":"<p><p>Features of the extracellular matrix, along with biochemical factors, have a momentous impress in making genes on and/or off. The interaction of cells and the extracellular matrix is mediated by integrins. Therefore, these molecules have pivotal roles in regulating cell behaviors. Integrins include a group of molecules with a variety of characteristics that can affect different molecular cascades. Considering the importance of these molecules in tissue regeneration after injury, it is necessary to know well the integrins involved in the process of connecting cells to the extracellular matrix in each tissue.With the increase in life expectancy, bone tissue engineering has received more attention from researchers. Integrins are critical components in osteoblast differentiation, survival, and bone mechanotransduction. During osteogenic differentiation in stem cells, specific integrins facilitate multiple signaling pathways through their cytoplasmic domain, leading to the induction of osteogenic differentiation. Also, due to the importance of using biomaterials in bone tissue engineering, efforts have been made to design and use biomaterials with maximum interaction with integrins. Notably, the use of RGD peptide or fibronectin for surface modification is a well-established and commonly employed approach to manipulate integrin activity.This review article looks into integrins' role in bone development and regeneration. It then goes on to explore the complex mechanisms by which integrins contribute to these processes. In addition, this review discusses the use of natural and synthetic biomaterials that target integrins to promote bone regeneration.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"343-363"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541888/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration.\",\"authors\":\"Mohammad Tollabi, Zahra Poursalehi, Parichehr Mehrafshar, Rayhaneh Bakhtiari, Vahid Hosseinpour Sarmadi, Lobat Tayebi, Seyed Mohammad Amin Haramshahi\",\"doi\":\"10.1080/03008207.2024.2396002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Features of the extracellular matrix, along with biochemical factors, have a momentous impress in making genes on and/or off. The interaction of cells and the extracellular matrix is mediated by integrins. Therefore, these molecules have pivotal roles in regulating cell behaviors. Integrins include a group of molecules with a variety of characteristics that can affect different molecular cascades. Considering the importance of these molecules in tissue regeneration after injury, it is necessary to know well the integrins involved in the process of connecting cells to the extracellular matrix in each tissue.With the increase in life expectancy, bone tissue engineering has received more attention from researchers. Integrins are critical components in osteoblast differentiation, survival, and bone mechanotransduction. During osteogenic differentiation in stem cells, specific integrins facilitate multiple signaling pathways through their cytoplasmic domain, leading to the induction of osteogenic differentiation. Also, due to the importance of using biomaterials in bone tissue engineering, efforts have been made to design and use biomaterials with maximum interaction with integrins. Notably, the use of RGD peptide or fibronectin for surface modification is a well-established and commonly employed approach to manipulate integrin activity.This review article looks into integrins' role in bone development and regeneration. It then goes on to explore the complex mechanisms by which integrins contribute to these processes. In addition, this review discusses the use of natural and synthetic biomaterials that target integrins to promote bone regeneration.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"343-363\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2024.2396002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2024.2396002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration.
Features of the extracellular matrix, along with biochemical factors, have a momentous impress in making genes on and/or off. The interaction of cells and the extracellular matrix is mediated by integrins. Therefore, these molecules have pivotal roles in regulating cell behaviors. Integrins include a group of molecules with a variety of characteristics that can affect different molecular cascades. Considering the importance of these molecules in tissue regeneration after injury, it is necessary to know well the integrins involved in the process of connecting cells to the extracellular matrix in each tissue.With the increase in life expectancy, bone tissue engineering has received more attention from researchers. Integrins are critical components in osteoblast differentiation, survival, and bone mechanotransduction. During osteogenic differentiation in stem cells, specific integrins facilitate multiple signaling pathways through their cytoplasmic domain, leading to the induction of osteogenic differentiation. Also, due to the importance of using biomaterials in bone tissue engineering, efforts have been made to design and use biomaterials with maximum interaction with integrins. Notably, the use of RGD peptide or fibronectin for surface modification is a well-established and commonly employed approach to manipulate integrin activity.This review article looks into integrins' role in bone development and regeneration. It then goes on to explore the complex mechanisms by which integrins contribute to these processes. In addition, this review discusses the use of natural and synthetic biomaterials that target integrins to promote bone regeneration.
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.