Yan Naing Win, Martin Pöschel, Tyll Stöcker, Xuelian Du, Alina Klaus, Ben Wilhelm Braun, Linnéa Lukas, Alexa Brox, Heiko Schoof, Frank Hochholdinger, Caroline Marcon
{"title":"利用波恩姆资源的玉米(Zea mays L.)突变体转座子诱导突变体进行正向和反向遗传学研究。","authors":"Yan Naing Win, Martin Pöschel, Tyll Stöcker, Xuelian Du, Alina Klaus, Ben Wilhelm Braun, Linnéa Lukas, Alexa Brox, Heiko Schoof, Frank Hochholdinger, Caroline Marcon","doi":"10.1101/pdb.prot108587","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>BonnMu</i> resource represents a tagged collection of maize (<i>Zea mays</i> L.) <i>Mutator</i> (<i>Mu</i>) transposon-induced mutants, designed for functional genomics studies. Here, we describe the use of the <i>BonnMu</i> collection for identifying and characterizing mutations. Specifically, we describe workflows for use in both reverse and forward genetics strategies in maize. For reverse genetics, users first acquire a <i>BonnMu</i> F<sub>2</sub> stock of interest based on data accessible at the Maize Genetics and Genomics Database (MaizeGDB). We provide details here for their subsequent propagation and for the confirmation of <i>Mu</i> insertions by genotyping via PCR, with the ultimate goal of establishing genotype-phenotype relationships of interest. For forward genetics studies, we describe a workflow that involves a combined approach of Mutant-Seq (Mu-Seq) and bulked segregant RNA-seq (BSR-Seq), to identify the causal gene underlying a mutant phenotype of interest.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Maize (<i>Zea mays</i> L.) Mutator Transposon-Induced Mutants of the <i>BonnMu</i> Resource for Forward and Reverse Genetics Studies.\",\"authors\":\"Yan Naing Win, Martin Pöschel, Tyll Stöcker, Xuelian Du, Alina Klaus, Ben Wilhelm Braun, Linnéa Lukas, Alexa Brox, Heiko Schoof, Frank Hochholdinger, Caroline Marcon\",\"doi\":\"10.1101/pdb.prot108587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>BonnMu</i> resource represents a tagged collection of maize (<i>Zea mays</i> L.) <i>Mutator</i> (<i>Mu</i>) transposon-induced mutants, designed for functional genomics studies. Here, we describe the use of the <i>BonnMu</i> collection for identifying and characterizing mutations. Specifically, we describe workflows for use in both reverse and forward genetics strategies in maize. For reverse genetics, users first acquire a <i>BonnMu</i> F<sub>2</sub> stock of interest based on data accessible at the Maize Genetics and Genomics Database (MaizeGDB). We provide details here for their subsequent propagation and for the confirmation of <i>Mu</i> insertions by genotyping via PCR, with the ultimate goal of establishing genotype-phenotype relationships of interest. For forward genetics studies, we describe a workflow that involves a combined approach of Mutant-Seq (Mu-Seq) and bulked segregant RNA-seq (BSR-Seq), to identify the causal gene underlying a mutant phenotype of interest.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.prot108587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of Maize (Zea mays L.) Mutator Transposon-Induced Mutants of the BonnMu Resource for Forward and Reverse Genetics Studies.
The BonnMu resource represents a tagged collection of maize (Zea mays L.) Mutator (Mu) transposon-induced mutants, designed for functional genomics studies. Here, we describe the use of the BonnMu collection for identifying and characterizing mutations. Specifically, we describe workflows for use in both reverse and forward genetics strategies in maize. For reverse genetics, users first acquire a BonnMu F2 stock of interest based on data accessible at the Maize Genetics and Genomics Database (MaizeGDB). We provide details here for their subsequent propagation and for the confirmation of Mu insertions by genotyping via PCR, with the ultimate goal of establishing genotype-phenotype relationships of interest. For forward genetics studies, we describe a workflow that involves a combined approach of Mutant-Seq (Mu-Seq) and bulked segregant RNA-seq (BSR-Seq), to identify the causal gene underlying a mutant phenotype of interest.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.