利用多色 FLP-Out 对果蝇的单神经元进行标记

Zarion D Marshall, Chris C Wreden, Ellie S Heckscher
{"title":"利用多色 FLP-Out 对果蝇的单神经元进行标记","authors":"Zarion D Marshall, Chris C Wreden, Ellie S Heckscher","doi":"10.1101/pdb.prot108422","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons exhibit some of the most striking examples of morphological diversity of any cell type. Thus, when studying neurons, the morphology of each neuron must be considered individually. However, neurons densely populate the central nervous system (CNS), making it difficult to ascertain fine morphological features due to a lack of spatial resolution. In <i>Drosophila</i>, this problem can be partially resolved by using driver lines that express the yeast transcription factor GAL4 in subsets of neurons. GAL4 can activate the expression of other introduced genetic elements such as genes for fluorescent proteins or other markers under the control of the GAL4 upstream activation sequences (UAS effectors). However, even highly specific GAL4 lines often label sets of potentially morphologically heterogeneous neurons. Here, we describe a protocol for using the multicolor flip-out (MCFO) technique in <i>Drosophila melanogaster</i> to stochastically label individual neurons within a GAL4 expression pattern. MCFO relies on the binary GAL4/UAS expression system in <i>Drosophila</i> but adds additional control for how densely the neurons within a GAL4 expression pattern are labeled via user-controlled heat shock. Specifically, three discrete UAS effector elements containing the sequences for unique epitope tags (FLAG, HA, and V5) linked to a gene for nonfluorescent GFP can be independently expressed under the control of GAL4 only when a transcriptional stop sequence in the UAS promoter sequence has been removed by heat shock-induced recombination. This effectively labels multiple individual neurons with either one or a combination of epitope tags that can be spectrally resolved with immunofluorescence. The MCFO technique is ideal for researchers who want to determine morphological features of CNS neurons in wild-type or mutant backgrounds.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Neuron Labeling in <i>Drosophila</i> Using Multicolor FLP-Out.\",\"authors\":\"Zarion D Marshall, Chris C Wreden, Ellie S Heckscher\",\"doi\":\"10.1101/pdb.prot108422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurons exhibit some of the most striking examples of morphological diversity of any cell type. Thus, when studying neurons, the morphology of each neuron must be considered individually. However, neurons densely populate the central nervous system (CNS), making it difficult to ascertain fine morphological features due to a lack of spatial resolution. In <i>Drosophila</i>, this problem can be partially resolved by using driver lines that express the yeast transcription factor GAL4 in subsets of neurons. GAL4 can activate the expression of other introduced genetic elements such as genes for fluorescent proteins or other markers under the control of the GAL4 upstream activation sequences (UAS effectors). However, even highly specific GAL4 lines often label sets of potentially morphologically heterogeneous neurons. Here, we describe a protocol for using the multicolor flip-out (MCFO) technique in <i>Drosophila melanogaster</i> to stochastically label individual neurons within a GAL4 expression pattern. MCFO relies on the binary GAL4/UAS expression system in <i>Drosophila</i> but adds additional control for how densely the neurons within a GAL4 expression pattern are labeled via user-controlled heat shock. Specifically, three discrete UAS effector elements containing the sequences for unique epitope tags (FLAG, HA, and V5) linked to a gene for nonfluorescent GFP can be independently expressed under the control of GAL4 only when a transcriptional stop sequence in the UAS promoter sequence has been removed by heat shock-induced recombination. This effectively labels multiple individual neurons with either one or a combination of epitope tags that can be spectrally resolved with immunofluorescence. The MCFO technique is ideal for researchers who want to determine morphological features of CNS neurons in wild-type or mutant backgrounds.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.prot108422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在所有细胞类型中,神经元的形态多样性最为突出。因此,在研究神经元时,必须单独考虑每个神经元的形态。然而,神经元密集地分布在中枢神经系统(CNS)中,由于缺乏空间分辨率,很难确定精细的形态特征。在果蝇中,使用在神经元亚群中表达酵母转录因子 GAL4 的驱动系可以部分解决这一问题。在 GAL4 上游激活序列(UAS 效应器)的控制下,GAL4 可以激活其他引入遗传元件的表达,如荧光蛋白或其他标记的基因。然而,即使是特异性很强的 GAL4 株系,也经常会标记出形态上可能不一致的神经元集。在这里,我们介绍了一种在黑腹果蝇中使用多色翻转技术(MCFO)随机标记 GAL4 表达模式中单个神经元的方法。MCFO 依赖于果蝇的二元 GAL4/UAS 表达系统,但通过用户控制的热休克增加了对 GAL4 表达模式内神经元标记密度的控制。具体来说,只有当 UAS 启动子序列中的转录终止序列被热休克诱导的重组去除后,三个离散的 UAS 效应元件才能在 GAL4 的控制下独立表达,这些元件包含与非荧光 GFP 基因相连的独特表位标签(FLAG、HA 和 V5)序列。这就有效地用一个或多个表位标签组合标记了多个独立的神经元,这些表位标签可以用免疫荧光进行光谱分辨。MCFO 技术是希望确定野生型或突变型背景中枢神经系统神经元形态特征的研究人员的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Neuron Labeling in Drosophila Using Multicolor FLP-Out.

Neurons exhibit some of the most striking examples of morphological diversity of any cell type. Thus, when studying neurons, the morphology of each neuron must be considered individually. However, neurons densely populate the central nervous system (CNS), making it difficult to ascertain fine morphological features due to a lack of spatial resolution. In Drosophila, this problem can be partially resolved by using driver lines that express the yeast transcription factor GAL4 in subsets of neurons. GAL4 can activate the expression of other introduced genetic elements such as genes for fluorescent proteins or other markers under the control of the GAL4 upstream activation sequences (UAS effectors). However, even highly specific GAL4 lines often label sets of potentially morphologically heterogeneous neurons. Here, we describe a protocol for using the multicolor flip-out (MCFO) technique in Drosophila melanogaster to stochastically label individual neurons within a GAL4 expression pattern. MCFO relies on the binary GAL4/UAS expression system in Drosophila but adds additional control for how densely the neurons within a GAL4 expression pattern are labeled via user-controlled heat shock. Specifically, three discrete UAS effector elements containing the sequences for unique epitope tags (FLAG, HA, and V5) linked to a gene for nonfluorescent GFP can be independently expressed under the control of GAL4 only when a transcriptional stop sequence in the UAS promoter sequence has been removed by heat shock-induced recombination. This effectively labels multiple individual neurons with either one or a combination of epitope tags that can be spectrally resolved with immunofluorescence. The MCFO technique is ideal for researchers who want to determine morphological features of CNS neurons in wild-type or mutant backgrounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信