评估喹啉类化合物:用分子动力学方法评估乙酰胆碱酯酶抑制剂治疗阿尔茨海默病的潜力。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Chemphyschem Pub Date : 2025-01-02 Epub Date: 2024-11-08 DOI:10.1002/cphc.202400653
Mario Prejanò, Isabella Romeo, Luis Felipe Hernández-Ayala, Eduardo Gabriel Guzmán-López, Stefano Alcaro, Annia Galano, Tiziana Marino
{"title":"评估喹啉类化合物:用分子动力学方法评估乙酰胆碱酯酶抑制剂治疗阿尔茨海默病的潜力。","authors":"Mario Prejanò, Isabella Romeo, Luis Felipe Hernández-Ayala, Eduardo Gabriel Guzmán-López, Stefano Alcaro, Annia Galano, Tiziana Marino","doi":"10.1002/cphc.202400653","DOIUrl":null,"url":null,"abstract":"<p><p>Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities that it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400653"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747580/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating Quinolines: Molecular Dynamics Approach to Assess Their Potential as Acetylcholinesterase Inhibitors for Alzheimer's Disease.\",\"authors\":\"Mario Prejanò, Isabella Romeo, Luis Felipe Hernández-Ayala, Eduardo Gabriel Guzmán-López, Stefano Alcaro, Annia Galano, Tiziana Marino\",\"doi\":\"10.1002/cphc.202400653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities that it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400653\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747580/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400653\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400653","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

喹啉具有广泛的生物和药理活性,是开发潜在药物的一个很有前途的支架。本研究通过分子动力学模拟研究了从 CADMA-Chem 对接协议中获得的喹啉衍生物作为乙酰胆碱酯酶的潜在抑制剂。所研究的物种可分为中性、dq815(2,3 二羟基-喹啉-4-甲醛)、dq829(2,3 二羟基-喹啉-8-羧酸甲酯)、dq1356(3,4 二羟基-喹啉-6-甲醛)、dq1368(3,4-二羟基-喹啉-8-羧酸甲酯)和 dq2357(5,6-二羟基-喹啉-8-羧酸甲酯),以及去质子化的 dq815_dep、dq829_dep、dq1356_dep 和 dq2357_dep。共进行了 12 次分子动力学模拟,包括天然乙酰胆碱、著名的多奈哌齐抑制剂和作为参考的创始喹啉的分子动力学模拟。对关键的分子间相互作用进行了检测和讨论,以描述所有考虑物种的不同动态行为。根据 MMPBSA 计算出的结合能很好地解释了在模拟时间内观察到的动态行为,因此 dq1368 有希望成为抑制乙酰胆碱酯酶的候选化合物。此外,还提出了生产所研究化合物的逆合成路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Quinolines: Molecular Dynamics Approach to Assess Their Potential as Acetylcholinesterase Inhibitors for Alzheimer's Disease.

Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities that it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信