Mario Prejanò, Isabella Romeo, Luis Felipe Hernández-Ayala, Eduardo Gabriel Guzmán-López, Stefano Alcaro, Annia Galano, Tiziana Marino
{"title":"评估喹啉类化合物:用分子动力学方法评估乙酰胆碱酯酶抑制剂治疗阿尔茨海默病的潜力。","authors":"Mario Prejanò, Isabella Romeo, Luis Felipe Hernández-Ayala, Eduardo Gabriel Guzmán-López, Stefano Alcaro, Annia Galano, Tiziana Marino","doi":"10.1002/cphc.202400653","DOIUrl":null,"url":null,"abstract":"<p><p>Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities that it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Quinolines: Molecular Dynamics Approach to Assess Their Potential as Acetylcholinesterase Inhibitors for Alzheimer's Disease.\",\"authors\":\"Mario Prejanò, Isabella Romeo, Luis Felipe Hernández-Ayala, Eduardo Gabriel Guzmán-López, Stefano Alcaro, Annia Galano, Tiziana Marino\",\"doi\":\"10.1002/cphc.202400653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities that it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400653\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400653","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Evaluating Quinolines: Molecular Dynamics Approach to Assess Their Potential as Acetylcholinesterase Inhibitors for Alzheimer's Disease.
Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities that it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.