骨组织工程中时空可控 BMP-2 给药新策略

IF 3.2 4区 医学 Q3 CELL & TISSUE ENGINEERING
Jingqi Qi, Hongwei Wu, Gengyan Liu
{"title":"骨组织工程中时空可控 BMP-2 给药新策略","authors":"Jingqi Qi, Hongwei Wu, Gengyan Liu","doi":"10.1177/09636897241276733","DOIUrl":null,"url":null,"abstract":"<p><p>Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241276733"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418245/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering.\",\"authors\":\"Jingqi Qi, Hongwei Wu, Gengyan Liu\",\"doi\":\"10.1177/09636897241276733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.</p>\",\"PeriodicalId\":9721,\"journal\":{\"name\":\"Cell Transplantation\",\"volume\":\"33 \",\"pages\":\"9636897241276733\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418245/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09636897241276733\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897241276733","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

美国食品和药物管理局已批准将骨形态发生蛋白-2(BMP-2)用于治疗骨缺损和骨病。BMP-2 可促进间充质干细胞的成骨分化。在骨组织工程中,将 BMP-2 加入支架可用于刺激类器官构建、药物测试平台和骨移植中的骨再生。然而,由于 BMP-2 的循环半衰期短、细胞外基质水凝胶中的微生物污染以及给药方法等原因,BMP-2 的高剂量和不可控释放率对其临床应用提出了挑战。此外,在临床转化过程中,需要高剂量的 BMP-2 才能发挥疗效,这也给成本和安全性带来了挑战。有鉴于此,新策略应确保 BMP-2 被精确输送到体内所需位置,调节 BMP-2 释放时间以配合骨愈合过程,并以可控方式释放 BMP-2,以优化治疗效果并减少副作用。本综述重点介绍了应用时空和可控 BMP-2 给药的骨组织工程学的改进,包括分子工程学、生物材料改性和协同疗法,旨在为未来的研究和临床试验提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering.

Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Transplantation
Cell Transplantation 生物-细胞与组织工程
CiteScore
6.00
自引率
3.00%
发文量
97
审稿时长
6 months
期刊介绍: Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信