主体间动态条件相关性:在自然刺激过程中追踪框架网络牵连的新方法。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-11-01 Epub Date: 2024-10-02 DOI:10.1089/brain.2023.0075
Lifeng Chen, Shiyao Tan, Chaoqun Li, Zonghui Lin, Xin Hu, Tianyi Gu, Jiaxuan Liu, Xiaolin Guo, Zhiheng Qu, Xiaowei Gao, Yaling Wang, Wanchun Li, Zhongqi Li, Junjie Yang, Wanjing Li, Zhe Hu, Junjing Li, Yien Huang, Jiali Chen, Dongqiang Liu, Hui Xie, Binke Yuan
{"title":"主体间动态条件相关性:在自然刺激过程中追踪框架网络牵连的新方法。","authors":"Lifeng Chen, Shiyao Tan, Chaoqun Li, Zonghui Lin, Xin Hu, Tianyi Gu, Jiaxuan Liu, Xiaolin Guo, Zhiheng Qu, Xiaowei Gao, Yaling Wang, Wanchun Li, Zhongqi Li, Junjie Yang, Wanjing Li, Zhe Hu, Junjing Li, Yien Huang, Jiali Chen, Dongqiang Liu, Hui Xie, Binke Yuan","doi":"10.1089/brain.2023.0075","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Naturalistic stimuli have become increasingly popular in modern cognitive neuroscience. These stimuli have high ecological validity due to their rich and multilayered features. However, their complexity also presents methodological challenges for uncovering neural network reconfiguration. Dynamic functional connectivity using the sliding-window technique is commonly used but has several limitations. In this study, we introduce a new method called intersubject dynamic conditional correlation (ISDCC). <b><i>Method:</i></b> ISDCC uses intersubject analysis to remove intrinsic and non-neuronal signals, retaining only intersubject-consistent stimuli-induced signals. It then applies dynamic conditional correlation (DCC) based on the generalized autoregressive conditional heteroskedasticity to calculate the framewise functional connectivity. To validate ISDCC, we analyzed simulation data with known network reconfiguration patterns and two publicly available narrative functional Magnetic Resonance Imaging (fMRI) datasets. <b><i>Results:</i></b> (1) ISDCC accurately unveiled the underlying network reconfiguration patterns in simulation data, demonstrating greater sensitivity than DCC; (2) ISDCC identified synchronized network reconfiguration patterns across listeners; (3) ISDCC effectively differentiated between stimulus types with varying temporal coherence; and (4) network reconfigurations unveiled by ISDCC were significantly correlated with listener engagement during narrative comprehension. <b><i>Conclusion:</i></b> ISDCC is a precise and dynamic method for tracking network implications in response to naturalistic stimuli.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersubject Dynamic Conditional Correlation: A Novel Method to Track the Framewise Network Implication during Naturalistic Stimuli.\",\"authors\":\"Lifeng Chen, Shiyao Tan, Chaoqun Li, Zonghui Lin, Xin Hu, Tianyi Gu, Jiaxuan Liu, Xiaolin Guo, Zhiheng Qu, Xiaowei Gao, Yaling Wang, Wanchun Li, Zhongqi Li, Junjie Yang, Wanjing Li, Zhe Hu, Junjing Li, Yien Huang, Jiali Chen, Dongqiang Liu, Hui Xie, Binke Yuan\",\"doi\":\"10.1089/brain.2023.0075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Naturalistic stimuli have become increasingly popular in modern cognitive neuroscience. These stimuli have high ecological validity due to their rich and multilayered features. However, their complexity also presents methodological challenges for uncovering neural network reconfiguration. Dynamic functional connectivity using the sliding-window technique is commonly used but has several limitations. In this study, we introduce a new method called intersubject dynamic conditional correlation (ISDCC). <b><i>Method:</i></b> ISDCC uses intersubject analysis to remove intrinsic and non-neuronal signals, retaining only intersubject-consistent stimuli-induced signals. It then applies dynamic conditional correlation (DCC) based on the generalized autoregressive conditional heteroskedasticity to calculate the framewise functional connectivity. To validate ISDCC, we analyzed simulation data with known network reconfiguration patterns and two publicly available narrative functional Magnetic Resonance Imaging (fMRI) datasets. <b><i>Results:</i></b> (1) ISDCC accurately unveiled the underlying network reconfiguration patterns in simulation data, demonstrating greater sensitivity than DCC; (2) ISDCC identified synchronized network reconfiguration patterns across listeners; (3) ISDCC effectively differentiated between stimulus types with varying temporal coherence; and (4) network reconfigurations unveiled by ISDCC were significantly correlated with listener engagement during narrative comprehension. <b><i>Conclusion:</i></b> ISDCC is a precise and dynamic method for tracking network implications in response to naturalistic stimuli.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2023.0075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

背景:自然刺激在现代认知神经科学中越来越受欢迎。这些刺激因其丰富的多层次特征而具有很高的生态学有效性。然而,它们的复杂性也给揭示神经网络重构带来了方法上的挑战。使用滑动窗口技术进行动态功能连接是常用的方法,但存在一些局限性。在本研究中,我们引入了一种名为 "受试者间动态条件相关性"(ISDCC)的新方法:方法:ISDCC 采用受试者间分析,去除内在和非神经元信号,只保留受试者间一致的刺激诱导信号。然后,它在广义自回归条件异方差的基础上应用动态条件相关性(DCC)来计算框架功能连接性。为了验证 ISDCC,我们分析了已知网络重构模式的模拟数据和两个公开的叙述性 fMRI 数据集:1)ISDCC 准确揭示了模拟数据中潜在的网络重构模式,比 DCC 显示出更高的灵敏度;2)ISDCC 识别了不同听者的同步网络重构模式;3)ISDCC 有效区分了不同时间一致性的刺激类型;4)ISDCC 揭示的网络重构与听者在叙事理解过程中的参与度显著相关:结论:ISDCC 是一种精确、动态的方法,可用于跟踪网络对自然刺激的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersubject Dynamic Conditional Correlation: A Novel Method to Track the Framewise Network Implication during Naturalistic Stimuli.

Background: Naturalistic stimuli have become increasingly popular in modern cognitive neuroscience. These stimuli have high ecological validity due to their rich and multilayered features. However, their complexity also presents methodological challenges for uncovering neural network reconfiguration. Dynamic functional connectivity using the sliding-window technique is commonly used but has several limitations. In this study, we introduce a new method called intersubject dynamic conditional correlation (ISDCC). Method: ISDCC uses intersubject analysis to remove intrinsic and non-neuronal signals, retaining only intersubject-consistent stimuli-induced signals. It then applies dynamic conditional correlation (DCC) based on the generalized autoregressive conditional heteroskedasticity to calculate the framewise functional connectivity. To validate ISDCC, we analyzed simulation data with known network reconfiguration patterns and two publicly available narrative functional Magnetic Resonance Imaging (fMRI) datasets. Results: (1) ISDCC accurately unveiled the underlying network reconfiguration patterns in simulation data, demonstrating greater sensitivity than DCC; (2) ISDCC identified synchronized network reconfiguration patterns across listeners; (3) ISDCC effectively differentiated between stimulus types with varying temporal coherence; and (4) network reconfigurations unveiled by ISDCC were significantly correlated with listener engagement during narrative comprehension. Conclusion: ISDCC is a precise and dynamic method for tracking network implications in response to naturalistic stimuli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信