{"title":"基于图谱的结构断层与脑肿瘤患者的认知能力有关。","authors":"Hibba Yousef, Brigitta Malagurski Törtei","doi":"10.1089/brain.2024.0028","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Brain tumors are associated with impaired cognitive functioning, which may result from disruptions in brain structural connectivity. Estimating structural disconnections is a more advantageous representation of tumor impact and can be performed indirectly through normative brain atlases. <b><i>Materials and Methods:</i></b> Using a publicly available dataset of glioma and meningioma patient MRI scans and tumor masks, latent correlations were estimated between measures of structural disconnection and attention-based cognitive functioning. These measures included gray matter (GM) parcel damage, white matter tract damage, GM parcel-to-parcel disconnections, and reaction time (RTI) as part of the Cambridge Neuropsychological Test Automated Battery to assess attention. <b><i>Results:</i></b> Preprocessing pipelines with two different methods of minimizing the pathology impact on MRI normalization were utilized: cost-function masking and lesion filling. The results across both pipelines were nearly consistent, with significant correlations mainly found between RTI measures and the damage to the left inferior fronto-occipital and uncinate fasciculus, as well as the left prefrontal-visual disconnections. <b><i>Conclusions:</i></b> This alludes to the importance of left-hemispheric prefrontal-visual coupling in attention-based tasks, particularly those involving object- and feature-based attention.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"489-499"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atlas-Based Structural Disconnectomes Are Associated with Cognitive Performance in Brain Tumors.\",\"authors\":\"Hibba Yousef, Brigitta Malagurski Törtei\",\"doi\":\"10.1089/brain.2024.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Brain tumors are associated with impaired cognitive functioning, which may result from disruptions in brain structural connectivity. Estimating structural disconnections is a more advantageous representation of tumor impact and can be performed indirectly through normative brain atlases. <b><i>Materials and Methods:</i></b> Using a publicly available dataset of glioma and meningioma patient MRI scans and tumor masks, latent correlations were estimated between measures of structural disconnection and attention-based cognitive functioning. These measures included gray matter (GM) parcel damage, white matter tract damage, GM parcel-to-parcel disconnections, and reaction time (RTI) as part of the Cambridge Neuropsychological Test Automated Battery to assess attention. <b><i>Results:</i></b> Preprocessing pipelines with two different methods of minimizing the pathology impact on MRI normalization were utilized: cost-function masking and lesion filling. The results across both pipelines were nearly consistent, with significant correlations mainly found between RTI measures and the damage to the left inferior fronto-occipital and uncinate fasciculus, as well as the left prefrontal-visual disconnections. <b><i>Conclusions:</i></b> This alludes to the importance of left-hemispheric prefrontal-visual coupling in attention-based tasks, particularly those involving object- and feature-based attention.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"489-499\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2024.0028\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2024.0028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Atlas-Based Structural Disconnectomes Are Associated with Cognitive Performance in Brain Tumors.
Background: Brain tumors are associated with impaired cognitive functioning, which may result from disruptions in brain structural connectivity. Estimating structural disconnections is a more advantageous representation of tumor impact and can be performed indirectly through normative brain atlases. Materials and Methods: Using a publicly available dataset of glioma and meningioma patient MRI scans and tumor masks, latent correlations were estimated between measures of structural disconnection and attention-based cognitive functioning. These measures included gray matter (GM) parcel damage, white matter tract damage, GM parcel-to-parcel disconnections, and reaction time (RTI) as part of the Cambridge Neuropsychological Test Automated Battery to assess attention. Results: Preprocessing pipelines with two different methods of minimizing the pathology impact on MRI normalization were utilized: cost-function masking and lesion filling. The results across both pipelines were nearly consistent, with significant correlations mainly found between RTI measures and the damage to the left inferior fronto-occipital and uncinate fasciculus, as well as the left prefrontal-visual disconnections. Conclusions: This alludes to the importance of left-hemispheric prefrontal-visual coupling in attention-based tasks, particularly those involving object- and feature-based attention.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.