{"title":"运动与更好的嗅觉表现以及嗅觉皮层和前额叶皮层之间更高的功能连接性之间的关系:静息状态 fNIRS 研究。","authors":"Chenping Zhang, Xiaochun Wang","doi":"10.1089/brain.2024.0015","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Olfactory deterioration is suggested to be a predictor of some neurodegenerative diseases. Recent studies indicate that physical exercise has a positive relationship with olfactory performance, and a subregion in the prefrontal cortex (PFC) may play an important role in olfactory processing. The PFC is not only related to olfactory function but it also engages in complex functions such as cognition and emotional processing. <b><i>Methodology:</i></b> Our study compared the functional connectivity between the olfactory cortex and the PFC in healthy individuals who exercised regularly and healthy persons who did not. Those who exercised more than three times/week for at least 30 min each time were considered the exercise group, and those who did not meet this exercise criteria were considered the nonexercise group. We also assessed their odor threshold. Participants were aged 55 years or older, and the two groups were balanced for age, sex, body mass index, and educational level. <b><i>Results:</i></b> We found that compared with individuals who did not exercise, exercisers had a significantly lower threshold for detecting odors. In addition, the olfactory cortex had stronger connectivity with the PFC in exercisers than in nonexercisers. More specifically, when the PFC was grouped into three subregions, namely, the ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and frontopolar cortex (FPA), Pearson correlation analysis revealed stronger connectivity between the VLPFC and the orbitofrontal cortex (OFC), between the OFC and the FPA, and between the left and right OFC hemispheres in the exercisers. In addition, Granger causality indicated higher directional connectivity from the DLPFC to the OFC in exercisers than in nonexercisers. <b><i>Conclusion:</i></b> Our findings indicated that the exercise group not only had better olfactory performance but also had stronger functional connectivity between the olfactory cortex and the PFC than nonexercise group.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"500-510"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of Exercise with Better Olfactory Performance and Higher Functional Connectivity Between the Olfactory Cortex and the Prefrontal Cortex: A Resting-State Functional Near-Infrared Spectroscopy Study.\",\"authors\":\"Chenping Zhang, Xiaochun Wang\",\"doi\":\"10.1089/brain.2024.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Olfactory deterioration is suggested to be a predictor of some neurodegenerative diseases. Recent studies indicate that physical exercise has a positive relationship with olfactory performance, and a subregion in the prefrontal cortex (PFC) may play an important role in olfactory processing. The PFC is not only related to olfactory function but it also engages in complex functions such as cognition and emotional processing. <b><i>Methodology:</i></b> Our study compared the functional connectivity between the olfactory cortex and the PFC in healthy individuals who exercised regularly and healthy persons who did not. Those who exercised more than three times/week for at least 30 min each time were considered the exercise group, and those who did not meet this exercise criteria were considered the nonexercise group. We also assessed their odor threshold. Participants were aged 55 years or older, and the two groups were balanced for age, sex, body mass index, and educational level. <b><i>Results:</i></b> We found that compared with individuals who did not exercise, exercisers had a significantly lower threshold for detecting odors. In addition, the olfactory cortex had stronger connectivity with the PFC in exercisers than in nonexercisers. More specifically, when the PFC was grouped into three subregions, namely, the ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and frontopolar cortex (FPA), Pearson correlation analysis revealed stronger connectivity between the VLPFC and the orbitofrontal cortex (OFC), between the OFC and the FPA, and between the left and right OFC hemispheres in the exercisers. In addition, Granger causality indicated higher directional connectivity from the DLPFC to the OFC in exercisers than in nonexercisers. <b><i>Conclusion:</i></b> Our findings indicated that the exercise group not only had better olfactory performance but also had stronger functional connectivity between the olfactory cortex and the PFC than nonexercise group.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"500-510\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2024.0015\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2024.0015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Association of Exercise with Better Olfactory Performance and Higher Functional Connectivity Between the Olfactory Cortex and the Prefrontal Cortex: A Resting-State Functional Near-Infrared Spectroscopy Study.
Background: Olfactory deterioration is suggested to be a predictor of some neurodegenerative diseases. Recent studies indicate that physical exercise has a positive relationship with olfactory performance, and a subregion in the prefrontal cortex (PFC) may play an important role in olfactory processing. The PFC is not only related to olfactory function but it also engages in complex functions such as cognition and emotional processing. Methodology: Our study compared the functional connectivity between the olfactory cortex and the PFC in healthy individuals who exercised regularly and healthy persons who did not. Those who exercised more than three times/week for at least 30 min each time were considered the exercise group, and those who did not meet this exercise criteria were considered the nonexercise group. We also assessed their odor threshold. Participants were aged 55 years or older, and the two groups were balanced for age, sex, body mass index, and educational level. Results: We found that compared with individuals who did not exercise, exercisers had a significantly lower threshold for detecting odors. In addition, the olfactory cortex had stronger connectivity with the PFC in exercisers than in nonexercisers. More specifically, when the PFC was grouped into three subregions, namely, the ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and frontopolar cortex (FPA), Pearson correlation analysis revealed stronger connectivity between the VLPFC and the orbitofrontal cortex (OFC), between the OFC and the FPA, and between the left and right OFC hemispheres in the exercisers. In addition, Granger causality indicated higher directional connectivity from the DLPFC to the OFC in exercisers than in nonexercisers. Conclusion: Our findings indicated that the exercise group not only had better olfactory performance but also had stronger functional connectivity between the olfactory cortex and the PFC than nonexercise group.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.