Vaibhav Srivastava, Aditya P Sarnaik, Pramod P Wangikar
{"title":"对快速生长的细长 Synechococcus 菌株进行代谢工程改造,以实现光营养生产烷烃。","authors":"Vaibhav Srivastava, Aditya P Sarnaik, Pramod P Wangikar","doi":"10.1002/btpr.3509","DOIUrl":null,"url":null,"abstract":"<p><p>Alkanes are high-energy hydrocarbons that are foreseen as next generation biofuels. Cyanobacteria are known to naturally synthesize C15-C19 alkanes; however, the titers are too low to make this a commercially viable process. Therefore, to leverage these photosynthetic platforms for improved alkane production, here we engineered three novel isolates of Synechococcus elongatus PCC 11801, PCC 11802, and IITB6. The two gene AAR-ADO alkane biosynthesis pathway was constructed by cloning the genes for acyl-ACP reductase (aar) and aldehyde deformylating oxygenase (ado) from S. elongatus PCC 7942 under the regulation of P<sub>rbcL</sub> promoter from PCC 7942 and native promoters from PCC 11801 such as P<sub>cpcB300</sub>, P<sub>psbAI</sub>, and P<sub>psbAIII</sub>. The genes were separately cloned under two different promoters, creating a library of the engineered strains. The results indicated that the engineered strains of novel S. elongatus isolates produced significantly higher amounts of alkanes than the model strain PCC 7942. The highest alkane yield achieved was 4.1 mg/gDCW in BG-11, while the highest titer was 31.5 mg/L in 5X BG-11, with an engineered IITB6 strain (P<sub>cpcB300</sub>:aar:T<sub>rrnB</sub>::P<sub>rbcL</sub>:ado:T<sub>Lac</sub>). Overall, the study highlights the potential of newly isolated S. elongatus strains as efficient alkane production platforms.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of rapidly growing Synechococcus elongatus strains for phototrophic production of alkanes.\",\"authors\":\"Vaibhav Srivastava, Aditya P Sarnaik, Pramod P Wangikar\",\"doi\":\"10.1002/btpr.3509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alkanes are high-energy hydrocarbons that are foreseen as next generation biofuels. Cyanobacteria are known to naturally synthesize C15-C19 alkanes; however, the titers are too low to make this a commercially viable process. Therefore, to leverage these photosynthetic platforms for improved alkane production, here we engineered three novel isolates of Synechococcus elongatus PCC 11801, PCC 11802, and IITB6. The two gene AAR-ADO alkane biosynthesis pathway was constructed by cloning the genes for acyl-ACP reductase (aar) and aldehyde deformylating oxygenase (ado) from S. elongatus PCC 7942 under the regulation of P<sub>rbcL</sub> promoter from PCC 7942 and native promoters from PCC 11801 such as P<sub>cpcB300</sub>, P<sub>psbAI</sub>, and P<sub>psbAIII</sub>. The genes were separately cloned under two different promoters, creating a library of the engineered strains. The results indicated that the engineered strains of novel S. elongatus isolates produced significantly higher amounts of alkanes than the model strain PCC 7942. The highest alkane yield achieved was 4.1 mg/gDCW in BG-11, while the highest titer was 31.5 mg/L in 5X BG-11, with an engineered IITB6 strain (P<sub>cpcB300</sub>:aar:T<sub>rrnB</sub>::P<sub>rbcL</sub>:ado:T<sub>Lac</sub>). Overall, the study highlights the potential of newly isolated S. elongatus strains as efficient alkane production platforms.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.3509\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3509","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolic engineering of rapidly growing Synechococcus elongatus strains for phototrophic production of alkanes.
Alkanes are high-energy hydrocarbons that are foreseen as next generation biofuels. Cyanobacteria are known to naturally synthesize C15-C19 alkanes; however, the titers are too low to make this a commercially viable process. Therefore, to leverage these photosynthetic platforms for improved alkane production, here we engineered three novel isolates of Synechococcus elongatus PCC 11801, PCC 11802, and IITB6. The two gene AAR-ADO alkane biosynthesis pathway was constructed by cloning the genes for acyl-ACP reductase (aar) and aldehyde deformylating oxygenase (ado) from S. elongatus PCC 7942 under the regulation of PrbcL promoter from PCC 7942 and native promoters from PCC 11801 such as PcpcB300, PpsbAI, and PpsbAIII. The genes were separately cloned under two different promoters, creating a library of the engineered strains. The results indicated that the engineered strains of novel S. elongatus isolates produced significantly higher amounts of alkanes than the model strain PCC 7942. The highest alkane yield achieved was 4.1 mg/gDCW in BG-11, while the highest titer was 31.5 mg/L in 5X BG-11, with an engineered IITB6 strain (PcpcB300:aar:TrrnB::PrbcL:ado:TLac). Overall, the study highlights the potential of newly isolated S. elongatus strains as efficient alkane production platforms.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.