利用几何注意力、分辨率间转移学习和基于同源性的增强技术,加速蛋白质结合位点预测。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Daeseok Lee, Wonjun Hwang, Jeunghyun Byun, Bonggun Shin
{"title":"利用几何注意力、分辨率间转移学习和基于同源性的增强技术,加速蛋白质结合位点预测。","authors":"Daeseok Lee, Wonjun Hwang, Jeunghyun Byun, Bonggun Shin","doi":"10.1186/s12859-024-05923-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Locating small molecule binding sites in target proteins, in the resolution of either pocket or residue, is critical in many drug-discovery scenarios. Since it is not always easy to find such binding sites using conventional methods, different deep learning methods to predict binding sites out of protein structures have been developed in recent years. The existing deep learning based methods have several limitations, including (1) the inefficiency of the CNN-only architecture, (2) loss of information due to excessive post-processing, and (3) the under-utilization of available data sources.</p><p><strong>Methods: </strong>We present a new model architecture and training method that resolves the aforementioned problems. First, by layering geometric self-attention units on top of residue-level 3D CNN outputs, our model overcomes the problems of CNN-only architectures. Second, by configuring the fundamental units of computation as residues and pockets instead of voxels, our method reduced the information loss from post-processing. Lastly, by employing inter-resolution transfer learning and homology-based augmentation, our method maximizes the utilization of available data sources to a significant extent.</p><p><strong>Results: </strong>The proposed method significantly outperformed all state-of-the-art baselines regarding both resolutions-pocket and residue. An ablation study demonstrated the indispensability of our proposed architecture, as well as transfer learning and homology-based augmentation, for achieving optimal performance. We further scrutinized our model's performance through a case study involving human serum albumin, which demonstrated our model's superior capability in identifying multiple binding sites of the protein, outperforming the existing methods.</p><p><strong>Conclusions: </strong>We believe that our contribution to the literature is twofold. Firstly, we introduce a novel computational method for binding site prediction with practical applications, substantiated by its strong performance across diverse benchmarks and case studies. Secondly, the innovative aspects in our method- specifically, the design of the model architecture, inter-resolution transfer learning, and homology-based augmentation-would serve as useful components for future work.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"306"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416008/pdf/","citationCount":"0","resultStr":"{\"title\":\"Turbocharging protein binding site prediction with geometric attention, inter-resolution transfer learning, and homology-based augmentation.\",\"authors\":\"Daeseok Lee, Wonjun Hwang, Jeunghyun Byun, Bonggun Shin\",\"doi\":\"10.1186/s12859-024-05923-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Locating small molecule binding sites in target proteins, in the resolution of either pocket or residue, is critical in many drug-discovery scenarios. Since it is not always easy to find such binding sites using conventional methods, different deep learning methods to predict binding sites out of protein structures have been developed in recent years. The existing deep learning based methods have several limitations, including (1) the inefficiency of the CNN-only architecture, (2) loss of information due to excessive post-processing, and (3) the under-utilization of available data sources.</p><p><strong>Methods: </strong>We present a new model architecture and training method that resolves the aforementioned problems. First, by layering geometric self-attention units on top of residue-level 3D CNN outputs, our model overcomes the problems of CNN-only architectures. Second, by configuring the fundamental units of computation as residues and pockets instead of voxels, our method reduced the information loss from post-processing. Lastly, by employing inter-resolution transfer learning and homology-based augmentation, our method maximizes the utilization of available data sources to a significant extent.</p><p><strong>Results: </strong>The proposed method significantly outperformed all state-of-the-art baselines regarding both resolutions-pocket and residue. An ablation study demonstrated the indispensability of our proposed architecture, as well as transfer learning and homology-based augmentation, for achieving optimal performance. We further scrutinized our model's performance through a case study involving human serum albumin, which demonstrated our model's superior capability in identifying multiple binding sites of the protein, outperforming the existing methods.</p><p><strong>Conclusions: </strong>We believe that our contribution to the literature is twofold. Firstly, we introduce a novel computational method for binding site prediction with practical applications, substantiated by its strong performance across diverse benchmarks and case studies. Secondly, the innovative aspects in our method- specifically, the design of the model architecture, inter-resolution transfer learning, and homology-based augmentation-would serve as useful components for future work.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"25 1\",\"pages\":\"306\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05923-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05923-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:以口袋或残基的分辨率定位目标蛋白质中的小分子结合位点在许多药物发现方案中至关重要。由于使用传统方法并不总是很容易找到这些结合位点,近年来人们开发了不同的深度学习方法来预测蛋白质结构中的结合位点。现有的基于深度学习的方法有几个局限性,包括:(1)纯 CNN 架构效率低下;(2)过度的后处理导致信息丢失;(3)对可用数据源利用不足:我们提出了一种新的模型架构和训练方法来解决上述问题。首先,我们的模型通过在残差级三维 CNN 输出之上分层几何自注意力单元,克服了纯 CNN 架构的问题。其次,通过将基本计算单元配置为残基和口袋而不是体素,我们的方法减少了后处理带来的信息损失。最后,通过采用分辨率间转移学习和基于同源性的增强,我们的方法在很大程度上最大限度地利用了可用数据源:结果:所提出的方法在分辨率--口袋和残留方面都明显优于所有最先进的基线方法。一项消融研究表明,我们提出的架构以及迁移学习和同源扩增对于实现最佳性能是不可或缺的。我们通过一项涉及人血清白蛋白的案例研究进一步检验了我们模型的性能,结果表明我们的模型在识别蛋白质的多个结合位点方面能力出众,优于现有方法:我们认为我们对文献的贡献是双重的。首先,我们介绍了一种用于结合位点预测的新型计算方法,该方法在各种基准和案例研究中的出色表现证明了它的实际应用价值。其次,我们方法中的创新点--特别是模型架构设计、分辨率间转移学习和基于同源性的增强--将成为未来工作的有用组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbocharging protein binding site prediction with geometric attention, inter-resolution transfer learning, and homology-based augmentation.

Background: Locating small molecule binding sites in target proteins, in the resolution of either pocket or residue, is critical in many drug-discovery scenarios. Since it is not always easy to find such binding sites using conventional methods, different deep learning methods to predict binding sites out of protein structures have been developed in recent years. The existing deep learning based methods have several limitations, including (1) the inefficiency of the CNN-only architecture, (2) loss of information due to excessive post-processing, and (3) the under-utilization of available data sources.

Methods: We present a new model architecture and training method that resolves the aforementioned problems. First, by layering geometric self-attention units on top of residue-level 3D CNN outputs, our model overcomes the problems of CNN-only architectures. Second, by configuring the fundamental units of computation as residues and pockets instead of voxels, our method reduced the information loss from post-processing. Lastly, by employing inter-resolution transfer learning and homology-based augmentation, our method maximizes the utilization of available data sources to a significant extent.

Results: The proposed method significantly outperformed all state-of-the-art baselines regarding both resolutions-pocket and residue. An ablation study demonstrated the indispensability of our proposed architecture, as well as transfer learning and homology-based augmentation, for achieving optimal performance. We further scrutinized our model's performance through a case study involving human serum albumin, which demonstrated our model's superior capability in identifying multiple binding sites of the protein, outperforming the existing methods.

Conclusions: We believe that our contribution to the literature is twofold. Firstly, we introduce a novel computational method for binding site prediction with practical applications, substantiated by its strong performance across diverse benchmarks and case studies. Secondly, the innovative aspects in our method- specifically, the design of the model architecture, inter-resolution transfer learning, and homology-based augmentation-would serve as useful components for future work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信