{"title":"副肿瘤性白细胞增多症诱导膀胱癌 PDX 模型的 NETosis 和血栓形成。","authors":"Yung-Chia Kuo, Chen-Yang Huang, Cedric Chuan Young Ng, Chiao-Yun Lin, Wen-Kuan Huang, Li-Yu Lee, Hsien-Chi Fan, An-Chi Lin, Kai-Jie Yu, See-Tong Pang, Bin Tean Teh, Cheng-Lung Hsu","doi":"10.62347/IHIO5742","DOIUrl":null,"url":null,"abstract":"<p><p>Paraneoplastic leukocytosis (PNL) in genitourinary cancer, though rare, can indicate aggressive behavior and poor outcomes. It has been potentially linked to cancer expressing G-CSF and GM-CSF, along with their respective receptors, exerting an autocrine/paracrine effect. In our study, we successfully established four patient-derived xenograft (PDX) lines and related cell lines from urothelial cancer (UC), conducting next-generation sequencing (NGS) for genetic studies. UC-PDX-LN1, originating from bladder cancer, exhibited two druggable targets - <i>HRAS</i> and <i>ERCC2</i> - responding well to chemotherapy and targeted therapy, though not to tipifarnib, an <i>HRAS</i> inhibitor. Transcriptome analysis post-treatment illuminated potential mechanisms, with index protein analysis confirming their anticancer pathways. Mice implanted with UC-PDX-LN1 mirrored PNL observed in the patient's original tumor. Cytokine array and RT-PCR analyses revealed high levels of G-CSF and GM-CSF in our PDX and cell lines, along with their presence in culture media and tumor cysts.Leukocytosis within small vessels in and around the tumor, associated with NETosis and thrombus formation, suggested a mechanism wherein secreted growth factors were retained, further fueling tumor growth via autocrine/paracrine signaling. Disrupting this cancer cell-NETosis-thrombosis cycle, we demonstrated that anti-neutrophil or anticoagulant interventions enhanced chemotherapy's antitumor effects or prolonged survival in mice, even though these drugs lacked direct antitumor efficacy when used independently. Clinical observations in bladder cancer patients revealed PNL in 1.61% of cases (35/2162) with associated poor prognosis. These findings propose a novel approach, advocating for the combination of anticancer/NETosis/thrombosis strategies for managing UC patients presenting with PNL in clinical settings.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 8","pages":"3694-3710"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387854/pdf/","citationCount":"0","resultStr":"{\"title\":\"Paraneoplastic leukocytosis induces NETosis and thrombosis in bladder cancer PDX model.\",\"authors\":\"Yung-Chia Kuo, Chen-Yang Huang, Cedric Chuan Young Ng, Chiao-Yun Lin, Wen-Kuan Huang, Li-Yu Lee, Hsien-Chi Fan, An-Chi Lin, Kai-Jie Yu, See-Tong Pang, Bin Tean Teh, Cheng-Lung Hsu\",\"doi\":\"10.62347/IHIO5742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Paraneoplastic leukocytosis (PNL) in genitourinary cancer, though rare, can indicate aggressive behavior and poor outcomes. It has been potentially linked to cancer expressing G-CSF and GM-CSF, along with their respective receptors, exerting an autocrine/paracrine effect. In our study, we successfully established four patient-derived xenograft (PDX) lines and related cell lines from urothelial cancer (UC), conducting next-generation sequencing (NGS) for genetic studies. UC-PDX-LN1, originating from bladder cancer, exhibited two druggable targets - <i>HRAS</i> and <i>ERCC2</i> - responding well to chemotherapy and targeted therapy, though not to tipifarnib, an <i>HRAS</i> inhibitor. Transcriptome analysis post-treatment illuminated potential mechanisms, with index protein analysis confirming their anticancer pathways. Mice implanted with UC-PDX-LN1 mirrored PNL observed in the patient's original tumor. Cytokine array and RT-PCR analyses revealed high levels of G-CSF and GM-CSF in our PDX and cell lines, along with their presence in culture media and tumor cysts.Leukocytosis within small vessels in and around the tumor, associated with NETosis and thrombus formation, suggested a mechanism wherein secreted growth factors were retained, further fueling tumor growth via autocrine/paracrine signaling. Disrupting this cancer cell-NETosis-thrombosis cycle, we demonstrated that anti-neutrophil or anticoagulant interventions enhanced chemotherapy's antitumor effects or prolonged survival in mice, even though these drugs lacked direct antitumor efficacy when used independently. Clinical observations in bladder cancer patients revealed PNL in 1.61% of cases (35/2162) with associated poor prognosis. These findings propose a novel approach, advocating for the combination of anticancer/NETosis/thrombosis strategies for managing UC patients presenting with PNL in clinical settings.</p>\",\"PeriodicalId\":7437,\"journal\":{\"name\":\"American journal of cancer research\",\"volume\":\"14 8\",\"pages\":\"3694-3710\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387854/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.62347/IHIO5742\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/IHIO5742","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Paraneoplastic leukocytosis induces NETosis and thrombosis in bladder cancer PDX model.
Paraneoplastic leukocytosis (PNL) in genitourinary cancer, though rare, can indicate aggressive behavior and poor outcomes. It has been potentially linked to cancer expressing G-CSF and GM-CSF, along with their respective receptors, exerting an autocrine/paracrine effect. In our study, we successfully established four patient-derived xenograft (PDX) lines and related cell lines from urothelial cancer (UC), conducting next-generation sequencing (NGS) for genetic studies. UC-PDX-LN1, originating from bladder cancer, exhibited two druggable targets - HRAS and ERCC2 - responding well to chemotherapy and targeted therapy, though not to tipifarnib, an HRAS inhibitor. Transcriptome analysis post-treatment illuminated potential mechanisms, with index protein analysis confirming their anticancer pathways. Mice implanted with UC-PDX-LN1 mirrored PNL observed in the patient's original tumor. Cytokine array and RT-PCR analyses revealed high levels of G-CSF and GM-CSF in our PDX and cell lines, along with their presence in culture media and tumor cysts.Leukocytosis within small vessels in and around the tumor, associated with NETosis and thrombus formation, suggested a mechanism wherein secreted growth factors were retained, further fueling tumor growth via autocrine/paracrine signaling. Disrupting this cancer cell-NETosis-thrombosis cycle, we demonstrated that anti-neutrophil or anticoagulant interventions enhanced chemotherapy's antitumor effects or prolonged survival in mice, even though these drugs lacked direct antitumor efficacy when used independently. Clinical observations in bladder cancer patients revealed PNL in 1.61% of cases (35/2162) with associated poor prognosis. These findings propose a novel approach, advocating for the combination of anticancer/NETosis/thrombosis strategies for managing UC patients presenting with PNL in clinical settings.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.