通过人工疏水亲锌涂层实现长寿命锌离子电池的无枝晶锌金属阳极。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-01-15 Epub Date: 2024-09-11 DOI:10.1016/j.jcis.2024.09.092
Hanning Zhang, Tao Shui, Nosipho Moloto, An Li, Ruogu Zhang, Jiacheng Liu, Song-Zhu Kure-Chu, Takehiko Hihara, Wei Zhang, ZhengMing Sun
{"title":"通过人工疏水亲锌涂层实现长寿命锌离子电池的无枝晶锌金属阳极。","authors":"Hanning Zhang, Tao Shui, Nosipho Moloto, An Li, Ruogu Zhang, Jiacheng Liu, Song-Zhu Kure-Chu, Takehiko Hihara, Wei Zhang, ZhengMing Sun","doi":"10.1016/j.jcis.2024.09.092","DOIUrl":null,"url":null,"abstract":"<p><p>Considering the desired energy density, safety and cost-effectiveness, rechargeable zinc-ion batteries (ZIBs) are regarded as one of the most promising energy storage units in next-generation energy systems. Nonetheless, the service life of the current ZIBs is significantly limited by rampant dendrite growth and severe parasitic reactions occurring on the anode side. To overcome these issues caused by poor interfacial ionic conduction and water erosion, we have developed a facile strategy to fabricate a uniform zinc borate layer at the zinc anode/electrolyte interface (ZnBO). Such protective layer integrates superhydrophobic-zincopholic properties, which can effectively eliminate the direct contact of water molecules on the anode, and homogenize the interfacial ionic transfer, thereby enhancing the cyclic stability of the zinc plating/stripping. As a result, the as-prepared ZnBO-coated anode exhibits extended lifespan of 1200 h at 1 mA cm<sup>-2</sup> and demonstrates remarkable durability of 570 h at 20 mA cm<sup>-2</sup> in Zn||Zn symmetric cells. Additionally, when coupled to an NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> (NVO) cathode, it also delivers a superior cyclability (203.5 mAh/g after 2000 cycles at 5 A/g, 89.3 % capacity retention) in coin full cells and a feasible capacity of 2.5 mAh at 1 A/g after 200 cycles in pouch full cells. This work offers a unique perspective on integrating hydrophobicity and zincophilicity at the anode/electrolyte interface through an artificial layer, thereby enhancing the cycle lifespan of ZIBs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt B","pages":"1148-1157"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating.\",\"authors\":\"Hanning Zhang, Tao Shui, Nosipho Moloto, An Li, Ruogu Zhang, Jiacheng Liu, Song-Zhu Kure-Chu, Takehiko Hihara, Wei Zhang, ZhengMing Sun\",\"doi\":\"10.1016/j.jcis.2024.09.092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Considering the desired energy density, safety and cost-effectiveness, rechargeable zinc-ion batteries (ZIBs) are regarded as one of the most promising energy storage units in next-generation energy systems. Nonetheless, the service life of the current ZIBs is significantly limited by rampant dendrite growth and severe parasitic reactions occurring on the anode side. To overcome these issues caused by poor interfacial ionic conduction and water erosion, we have developed a facile strategy to fabricate a uniform zinc borate layer at the zinc anode/electrolyte interface (ZnBO). Such protective layer integrates superhydrophobic-zincopholic properties, which can effectively eliminate the direct contact of water molecules on the anode, and homogenize the interfacial ionic transfer, thereby enhancing the cyclic stability of the zinc plating/stripping. As a result, the as-prepared ZnBO-coated anode exhibits extended lifespan of 1200 h at 1 mA cm<sup>-2</sup> and demonstrates remarkable durability of 570 h at 20 mA cm<sup>-2</sup> in Zn||Zn symmetric cells. Additionally, when coupled to an NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> (NVO) cathode, it also delivers a superior cyclability (203.5 mAh/g after 2000 cycles at 5 A/g, 89.3 % capacity retention) in coin full cells and a feasible capacity of 2.5 mAh at 1 A/g after 200 cycles in pouch full cells. This work offers a unique perspective on integrating hydrophobicity and zincophilicity at the anode/electrolyte interface through an artificial layer, thereby enhancing the cycle lifespan of ZIBs.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"678 Pt B\",\"pages\":\"1148-1157\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.09.092\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.09.092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

考虑到所需的能量密度、安全性和成本效益,可充电锌离子电池(ZIB)被认为是下一代能源系统中最有前途的储能装置之一。然而,由于枝晶生长猖獗以及阳极侧发生严重的寄生反应,目前锌离子电池的使用寿命受到了很大限制。为了克服这些由界面离子传导不良和水侵蚀引起的问题,我们开发了一种简便的策略,在锌阳极/电解质界面上制造出均匀的硼酸锌层(ZnBO)。这种保护层集超疏水-亲锌特性于一体,能有效消除阳极上水分子的直接接触,均匀化界面离子传导,从而提高镀锌/剥离的周期稳定性。因此,制备的 ZnBO 涂层阳极在 1 mA cm-2 电流条件下可延长 1200 小时的使用寿命,在 20 mA cm-2 电流条件下可在 Zn||Zn 对称电池中显示出 570 小时的显著耐久性。此外,当与 NH4V4O10(NVO)阴极耦合时,它还能在纽扣式全电池中提供卓越的循环能力(在 5 A/g 条件下循环 2000 次后达到 203.5 mAh/g,容量保持率 89.3%),在袋式全电池中循环 200 次后达到 1 A/g 条件下 2.5 mAh 的可行容量。这项工作提供了一个独特的视角,即通过人工层在阳极/电解质界面整合疏水性和亲锌性,从而提高 ZIB 的循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating.

Considering the desired energy density, safety and cost-effectiveness, rechargeable zinc-ion batteries (ZIBs) are regarded as one of the most promising energy storage units in next-generation energy systems. Nonetheless, the service life of the current ZIBs is significantly limited by rampant dendrite growth and severe parasitic reactions occurring on the anode side. To overcome these issues caused by poor interfacial ionic conduction and water erosion, we have developed a facile strategy to fabricate a uniform zinc borate layer at the zinc anode/electrolyte interface (ZnBO). Such protective layer integrates superhydrophobic-zincopholic properties, which can effectively eliminate the direct contact of water molecules on the anode, and homogenize the interfacial ionic transfer, thereby enhancing the cyclic stability of the zinc plating/stripping. As a result, the as-prepared ZnBO-coated anode exhibits extended lifespan of 1200 h at 1 mA cm-2 and demonstrates remarkable durability of 570 h at 20 mA cm-2 in Zn||Zn symmetric cells. Additionally, when coupled to an NH4V4O10 (NVO) cathode, it also delivers a superior cyclability (203.5 mAh/g after 2000 cycles at 5 A/g, 89.3 % capacity retention) in coin full cells and a feasible capacity of 2.5 mAh at 1 A/g after 200 cycles in pouch full cells. This work offers a unique perspective on integrating hydrophobicity and zincophilicity at the anode/electrolyte interface through an artificial layer, thereby enhancing the cycle lifespan of ZIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信